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Abstract

In terms of subjective evaluations, speech quality has been gen-
erally described by a mean opinion score (MOS). In recent
years, non-intrusive speech quality assessment shows an active
progress by leveraging deep learning techniques. In this paper,
we propose a new multi-task learning based model, termed as
subband adaptive attention temporal convolutional neural net-
work (SAA-TCN), to perform non-intrusive speech quality as-
sessment with the help of MOS value interval detector (VID)
auxiliary task. Instead of using fullband magnitude spectro-
gram, the proposed model takes subband magnitude spectro-
gram as the input to reduce model parameters and prevent over-
fitting. To effectively utilize the energy distribution informa-
tion along the subband frequency dimension, subband adaptive
attention (SAA) is employed to enhance the TCN model. Ex-
perimental results reveal that the proposed method achieves a
superior performance on predicting the MOS values. In Con-
ferencingSpeech 2022 Challenge, our method achieves a mean
Pearson’s correlation coefficient (PCC) score of 0.763 and out-
performs the challenge baseline method by 0.233.
Index Terms: Speech quality assessment, MOS, VID, multi-
task learning, SAA-TCN, PCC

1. Introduction
The effective assessment of speech quality and intelligibility is
a vital issue in modern speech communication systems. Typi-
cally, the speech assessment metrics are divided into two cate-
gories, subjective and objective metrics. For the evaluation of
subjective metrics, it involves human subjects to participate in
listening tests and provide feedbacks. One of the most widely
used subjective metrics is mean opinion score (MOS), whose
value range is from 1 to 5. Higher value means better speech
quality. Although MOS value is considered as a gold standard in
many scenarios including the naturalness assessment of synthe-
sized speech and the quality estimation of conference speech,
it is time-consuming and labor-intensive to perform the evalu-
ations. Hence, objective assessment metrics are usually used
as alternatives including perceptual evaluation of speech qual-
ity (PESQ) [1], short-time objective intelligibility (STOI) [2],
signal-to-distortion ratio (SDR), perceptual objective listening
quality assessment (POLQA) [3]. Although showing good cor-
relations with subjective evaluations, the need for a reference
signal limits the applications of the mentioned objective metrics
in real world, where typically no reference signal is available.

In recent years, deep neural network (DNN)-based learn-
ing architectures have been successfully applied to many speech
processing tasks, which greatly motivates the investigations of
DNN in non-intrusive speech quality assessment to overcome

the limitation of conventional objective metrics [4–8]. In [4],
a convolutional and recurrent neural network combined model
was adopted as a MOS predictor for voice conversion. In [5],
quality-Net used one bidirectional long short term memory (Bi-
LSTM) layer followed with two fully connected (FC) layers to
predict frame-level PESQ of input audio utterances. Taking rat-
ing bias of listeners into consideration, [6] added a listener-bias
branch of the system to model listener preferences. Besides,
different training architectures were utilized to improve the pre-
diction accuracy. To evaluate the performance of noise sup-
pressors, Deep Noise Suppression Mean Opinion Score (DNS-
MOS) API was used as a scoring tool [7], and training of DNS-
MOS applied a multi-stage self-teaching framework to aver-
age out human bias. In [8], DNN based speech enhancement
system was also used to assist non-intrusive speech quality as-
sessment, which can be considered as an surrogate subjective
metric and does not need a reference signal. Although DNN
based non-intrusive evaluation systems have achieved tremen-
dous progress, some drawbacks persist and need to be further
addressed. First, most systems do not generalize well in real
environments, for example, in online conference conditions,
which involve multiple speech distortions such as background
noise, room reverberation, and packet loss. Second, the predic-
tion accuracy of current evaluation systems tended to be lim-
ited on unseen data [9]. In [10], the multi-task learning mecha-
nism was also used to effectively estimate multiple objective as-
sessment metrics including PESQ, STOI, Hearing-Aid Speech
Quality Index (HASQI), and SDR.

Recently, temporal convolutional neural network (TCN)
based models have shown great successes in many speech pro-
cessing tasks, including noise suppression [11], acoustic echo
cancellation [12], dereverberation [13], and speech separation
[14]. Specifically, TCN employs residual learning with dilated
convolution units, which is able to capture wide contextual de-
pendencies and outperforms long short term memory (LSTM)
models in several sequence modeling tasks.

Motivated by the channel-wise subband study [15] and at-
tention based TCN [16], in this study, we propose a multi-task
network, termed as subband adaptive attention temporal convo-
lutional neural network (SAA-TCN), to perform non-intrusive
speech quality assessment. The proposed model utilizes sub-
band magnitude spectrogram as the input feature. Compared
with fullband model, this design can improve computation ef-
ficiency while mitigating overfitting by reducing model param-
eters. The introduction of a subband adaptive attention (SAA)
module helps the TCN to model the energy distribution along
the frequency dimension to focus more on important feature
channels. Finally, MOS value interval detector (VID) as an
auxiliary task is proposed to improve the MOS predictions. In
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addition, an auxiliary module is deployed to provide additional
information for the main MOS prediction task. The experimen-
tal results demonstrate that our approach provides reliable MOS
predictions for unknown speech samples.

The rest of the paper is organized as follows. Section 2
describes the non-intrusive speech quality assessment system as
well as their sub-modules. In Section 3, the experimental and
comparison results are presented to evaluate the performance of
the proposed method. The conclusions are given in Section 4.

2. Proposed method
2.1. System overview
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Figure 1: Schematic diagram of the multi-task SAA-TCN based
non-intrusive speech quality assessment system.

The schematic diagram of the multi-task SAA-TCN based
non-intrusive speech quality assessment system is illustrated in
Figure 1. The whole system consists of two stages. First, in the
“training stage”, data augmentation is used for input signals to
prevent model training from overfitting. After that, the signals
are decomposed into subbands introduced in [15]. Then, the
subband magnitude spectrogram is fed into SAA-TCN as the
input feature. During multi-task training, MOS and VID are
used as our optimization targets. Our experiments show that
multi-task learning can help to obtain more accurate predictions
on MOS branch.

In the “testing stage”, similar to training stage, we perform
subband analysis and extract subband magnitude spectrogram.
The well-trained SAA-TCN then takes subband feature as input
to predict the real MOS and VID.

2.2. Data augmentation

As described in [9], we explore two data augmentation strate-
gies: perturbing the audio speed by a randomly chosen factor
between 0.95 and 1.05; adding silence by a random time from
0.1s to 1s. For all training samples, we apply the aforemen-
tioned data augmentation online during training, which helps
the system reduce overfitting.

2.3. Subband analysis and subband feature

Liu [15] proposed to use the channel-wise subband feature to
reduce resource consumption and improve separation perfor-
mance. In this study, only the subband decomposition is used
in the analysis procedure. We utilize a set of analysis filters
Hk
(
ejω
)
, k = 1, 2, 3, 4 to decompose subbands.. The analy-

sis filters we used are uniform filterbanks with a length of 64,
which are referred to the configuration in [17]. We show the
subband magnitude spectrogram extraction in Figure 2. The in-
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Figure 2: Subband analysis and subband feature extractions.

terested readers are recommended to the open source toolbox 1

for more details. The usage of such subband features not only
speeds up computation but also helps to avoid overfitting during
training by reducing the number of parameters in the model.

2.4. The SAA-TCN model

Figure 3 shows the network architecture of our proposed mulit-
task SAA-TCN system for speech quality assessment. The de-
tails of each component of the system are described in the fol-
lowing subsections.

2.4.1. Encoder block

In this work, six encoder blocks are applied to the subband mag-
nitude spectrograms followed by a batch normalization layer to
learn suitable features. Each encoder block consists of one con-
volution layer with kernel size 3 × 3 followed by a batch nor-
malization layer and rectified linear unit (ReLU) activation. The
max pooling layer with kernel sizes 1× 2 is used to downsam-
ple the feature map in subband frequency. The detailed design
of the encoder block is shown in Table 1.

Table 1: Design of encoder blocks.

Layer Size Stride

Conv, 16 ch 3×3 1×1
Batch normalization
Relu
Maxpool 1×2 1×2
Conv, 32 ch 3×3 1×1
Batch normalization
Relu
Maxpool 1×2 1×2

| Conv, 64 ch 3×3 1×1

4×| Batch normalization
| Relu
| Maxpool 1×2 1×2

2.4.2. TCN block

Motivated by the successful TCN for sequence modeling [18]
and the effectiveness of adding a frequency dimension adap-
tive attention (FAA) module in TCN [16], N TCN blocks
with a subband frequency dimension adaptive attention mod-
ule are used in our model, as shown in the area encom-
passed by red dash lines in Figure 3. Each TCN block con-
tains three one-dimensional causal dilated convolutional units.
dmodel and df denote the dimension of encoder blocks output
and the size of first convolutional unit, respectively. In our

1https://www.mathworks.com/matlabcentral/fileexchange/40128-
filter-bank-design
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Figure 3: Overview of the SAA-TCN architecture. We use the subband magnitude spectrogram as the input feature to perform the MOS
and MOS value interval detection (VID) multi-task training.

model, each convolutional unit is pre-activated by the ReLU
activation followed by batch normalization. In Figure 3, we
use (kernel size, output size, dilation rate) to describe de-
tailed parameters of each convolutional unit. The first and third
convolutional units in each block have a kernel size of 1, and the
second convolutional unit has a kernel size of 3. The first and
third convolutional units have a dilation rate of 1, while the sec-
ond convolutional unit employs a dilation rate of d, providing
a larger context on temporal dimension. As mentioned in [14],
the dilation rate d is cycled as the block index b increases, given
by

d = 2(b−1 mod log2(D)+1), (1)

where mod is the modulo operation, and D is the maximum
dilation rate. In the ConferencingSpeech 2022 Challenge, we
choose dmodel = 256, df = 64, D = 16 and N = 20 as the
final configuration.

Recently, Squeeze-and-Excitation attention module has
been successfully applied to deep neural network based speech
processing. In [16], the authors proposed a FAA module to ob-
tain significant performance gains for speech enhancement. In
this study, we also add a SAA module under the TCN frame-
work to model the energy distribution along the subband fre-
quency dimension. After obtaining the output of three di-
lated convolutional units, we first reshape it into the shape of
1 × T × dmodel, and then global averaging pooling in SAA
module is used to generate the statistics of downsampled sub-
band frequency bins, denoted by gs. The average-pooled fea-
tures are then fed into two fully connected layers. With two
FCs, the linear information among subband frequency domain
can be combined more efficiently. The attention weight of the
subband frequency bins can be written as

w = σ(W1 δ(W0 (gs))), (2)

where the symbol δ represents the ReLU operation, W0 ∈
Rdmodel×dmodel/r and W1 ∈ Rdmodel/r×dmodel represent

weights of the FC layers. To reduce parameters and computa-
tion cost, the size of r is selected to be 4 in this study. The sym-
bol σ represents the excitation function, and a Sigmoid function
is used. The SAA can be easily integrated into TCN and bring
significant gain for system performance. Finally, dropout layer
is used to further mitigate overfitting issue during model train-
ing.

2.4.3. Auxiliary module

MOS value interval detector (VID) estimation is used as an aux-
iliary task to improve the accuracy of MOS prediction, which is
described in multi-task learning section 2.5 in details. The aux-
iliary module, shown in the area encompassed by golden dash
lines in Figure 3, aims at helping to incorporate the information
from the VID branch to the MOS prediction branch.

2.4.4. Attention pooling

Attention mechanism [20] has been successfully applied in
many learning tasks. Here we use the same attention pooling
module as proposed in [21]. The attention scores are first com-
puted by the feedforward networks, then masked at the zero-
padded time steps and applied to a softmax function to yield the
normalized attention weights, which is given by

Q = softmax((H1δ(YH0))), (3)

where Y ∈ RL×dtf , H0 ∈ Rdtf×M , H1 ∈ R1×L and
Q ∈ R1×M , dtf and M denote the feature vectors of dimen-
sion and the size of one FC layer in the feedforward networks,
respectively. In this study,M is set to 128, andL is the effective
frame-level dimensionality. These attention weights are applied
to the input matrix Y using a matrix multiplication operation,
given by

h = Y QT . (4)

Finally, we pass through a FC layer to estimate the overall score.
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2.4.5. Range clipping

To fit the human scoring distributions, we apply hyperbolic
tangent function to ensure a fixed range of network prediction
score. That is,

s = 2tanh(̄s) + 3 (5)

Where s̄ is the output of attention pooling layer. The value range
of s is constrained between 1 and 5, which guarantees the model
to always give reasonable scores.

2.5. Multi-task learning

Multi-task learning simultaneously optimizes multiple objec-
tives of different tasks using a shared backbone model. The
benefits come from auxiliary information and cross regulariza-
tion from different tasks. In our study, the MOS interval detec-
tor is used as an auxiliary task to improve the performance of
MOS predictions in the context of multi-task learning. The VID
state is obtained according to the MOS value interval given by

For i=0, 1, ...15 :
VID= i, if 1+0.25∗i≤MOS< 1+0.25 ∗ (i+1),

(6)

where the VID state i corresponds to different MOS value in-
tervals. 16 states are chosen based on the experimental results
described in Section 3.

The loss function of SAA-TCN for multi-task training is

L = LVID + LMOS, (7)

where LVID and LMOS are the loss components for VID and
MOS prediction, respectively. We use the cross-entropy loss as
LVID, and LMOS is defined as,





LMOS = LMSE + LPearson
LMSE = (ŝ− s)2
LPearson(s, ŝ) = 1− ρ2Pearson(s, ŝ)

ρPearson(s, ŝ) = Cov(s,ŝ)
σsσŝ

,

(8)

where s and ŝ are the desired scores and the estimated scores,
respectively; Cov and σ denote the covariance and variance,
respectively.

3. Experimental results
ConferencingSpeech 2022 Challenge datasets are used to eval-
uate the proposed system, which include Tencent Corpus,
NISQA Corpus, IU Bloomington Corpus, PSTN Corpus and
their corresponding MOS labels. From these datasets, only Ten-
cent Corpus, NISQA Corpus and PSTN Corpus were used as
the training data because the IU Bloomington Corpus adopted
ITU-R BS.1534 for subjective test resulting in a rating range of
0 ∼ 100 instead of 1 ∼ 5. Validation sets are selected from
Tencent Corpus and PSTN Corpus. We used 3000 randomly se-
lected speech clips from PSTN Corpus, 800 randomly selected
speech clips from Tencent WithoutReverb Corpus, and 256 ran-
domly selected speech clips from Tencent Reverb Corpus as
validation sets. All the waveforms are resampled to 48 kHz.
We calculate the STFT of the subband signals with a window
length of 512 and window shift of 256. The model is trained
with the Adam optimizer for 100 epochs with an initial learning
rate of 1e-3. We use early stopping to select the best models.

The NISQA speech quality prediction model proposed in
[21] is used as the baseline system. As shown in Table 2,
our method outperforms the baseline method in terms of mean
squared error (MSE), Pearson’s correlation coefficient (PCC),

Table 2: Model results in terms of MSE, PCC, and SROCC for
different validation sets (Tencent Corpus and PSTN).

Validation set Tencent corpus PSTN

Model MSE PCC SROCC MSE PCC SROCC
NISQA 0.1678 0.9424 0.9321 0.2492 0.8229 0.8071

TCN 0.1483 0.9452 0.9372 0.2599 0.8121 0.7943
SAA-TCN 0.1142 0.9575 0.9494 0.2473 0.8236 0.8087

Multi-Task SAA-TCN 0.0971 0.9649 0.9591 0.2405 0.8273 0.8115

Table 3: The performance of Multi-Task SAA-TCN using differ-
ent VID states configuration for different validation sets (Ten-
cent Corpus and PSTN).

Validation set Tencent corpus PSTN

VID states MSE PCC SROCC MSE PCC SROCC
4 0.1149 0.9581 0.9508 0.2462 0.8230 0.8081
8 0.1086 0.9619 0.9545 0.2455 0.8235 0.8086
16 0.0971 0.9649 0.9591 0.2405 0.8273 0.8115
32 0.1035 0.9626 0.9556 0.2477 0.8217 0.8065

Table 4: Proposed method and ConferencingSpeech 2022 Chal-
lenge baseline results in terms of RMSE, PCC for different test
sets (NISQA Corpus testset and Challenge testset).

Test set NISQA-TEST Challenge-TEST

Model RMSE PCC RMSE PCC
Challenge Baseline 0.6311 0.8337 0.543 0.724

Ours 0.4960 0.8575 0.474 0.781

and Spearman rank order correlation coefficient (SROCC) met-
rics on the validation sets, indicating the capability of SSA-TCN
for assessing speech quality. The baseline system, TCN system
and SAA-TCN without multi-task learning (using LMOS) are
also presented for comparisons.

Table 3 shows the validation results for different VID states
configuration. It can be seen that the best performance is
achieved by 16 VID states. Consequently, in the final submis-
sion to the ConferencingSpeech 2022 Challenge, we adopt the
following setup, TCN: dmodel = 256, df = 64, D = 16,
N = 20; SAA: r = 4; Multi-task: VIDStates = 16.

The challenge testset results released by the organizer are
shown in Table 4, and for overall performance, we obtain the
better result than baseline in terms of all eval metrics. And
NISQA-TEST (including NISQA-TEST-FOR, NISQA-TEST-
LIVETALK and NISQA-TEST-P501) is also used as the other
testset to evaluate the performances. We obtained higher scores
for both NISQA-TEST and Challenge-TEST in terms of root
mean squared error (RMSE) and PCC. In the future, data aug-
mentation module will be updated according to the real data
distribution to further improve the performance of our proposed
non-intrusive speech quality assessment system.

4. Conclusion
In this paper, a novel non-intrusive speech quality assesment
method based on multi-task SAA-TCN is proposed to provide
reliable MOS predictions. The proposed SAA-TCN model uses
the subband magnitude spectrogram as the input feature, which
reduces model parameters and prevents overfitting. SAA mod-
ule assists TCN model to obtain energy distribution along the
subband frequency dimension. The MOS value VID as an aux-
iliary task improves the performance of MOS prediction main
task. The experimental results show that the proposed model
outperforms the NISQA method in terms of all test metrics. On
the test sets of the ConferencingSpeech 2022 Challenge, our
model produces a superior performance compared with base-
line and is among the top five models in this challenge.
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