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Abstract. Federated Learning coordinates multiple clients to col-
laboratively train a shared model while preserving data privacy. How-
ever, the training data with noisy labels located on the participat-
ing clients severely harm the model performance. In this paper, we
propose FedCoop, a cooperative Federated Learning framework for
noisy labels. FedCoop mainly contains three components and con-
ducts robust training in two phases, data selection and model train-
ing. In the data selection phase, in order to mitigate the confirmation
bias caused by a single client, the Loss Transformer intelligently es-
timates the probability of each sample’s label to be clean through
cooperating with the helper clients, which have high data trustabil-
ity and similarity. After that, the Feature Comparator evaluates the
label quality for each sample in terms of latent feature space in or-
der to further improve the robustness of noisy label detection. In the
model training phase, the Feature Matcher trains the model on both
the noisy and clean data in a semi-supervised manner to fully uti-
lize the training data and exploits the feature of global class to in-
crease the consistency of pseudo labeling across the clients. The ex-
perimental results show FedCoop outperforms the baselines on vari-
ous datasets with different noise settings. It effectively improves the
model accuracy up to 62% and 27% on average compared with the
baselines.

1 Introduction

Federated Learning (FL) is designed to coordinate multiple clients
in order to train a shared model collaboratively while guaranteeing
data privacy [16, 25]. It has great potential to well support a wide
range of applications including medical and financial services. De-
spite the promising benefits, the following critical obstacle severely
prevents FL from being effectively deployed in real-world scenarios.
Due to the fact that high-quality annotation is extremely expensive
and time-consuming [2], the data located on different clients usually
contain noisy labels with different ratios. For instance, the ratio of
noisy labels in real-world datasets is reported to range from 8.0% to
38.5% [31]. In FL, the local models can easily overfit on corrupted
data and undermine the performance of the shared model via model
aggregation [22].

Limitations of Prior Art. In order to mitigate the impact of noisy
labels during the learning process, different approaches have been
proposed in both centralized and federated learning scenarios. Prior
solutions in centralized settings, such as designing robust loss func-
tions [29, 12] and sample selection strategies to identify noise-free
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samples [13, 23, 31, 28], have shown promise for effective training
with noisy labels. However, they are not directly transferable to FL.
for the two fundamental issues: 1) highly heterogeneous noise dis-
tribution among clients causes local model divergence that cannot
be addressed by robust loss functions [22]; 2) sample selection ap-
proaches for centralized setting are infeasible when dealing with lim-
ited training data on each client, which overfit the noisy data and lead
to unstable performance. Recently, several methods have been pro-
posed to mitigate the problem of noisy labels in FL [26, 6, 35, 34, 33].
These methods mainly focus on obtaining data with clean labels by
modeling noise probability or utilizing the memorization effect of
Deep Neural Networks (DNNs). However, noise probability mod-
eling methods require publicly available clean benchmark data to
model the noise samples, which is often difficult to obtain in real-
world scenarios [30, 31]. To overcome the restriction of public
benchmark data, some methods employ the distinction of samples’
loss through the memorization effect of DNNss to filter out the noisy
samples. Nevertheless, these methods neglect the issue of confirma-
tion bias and the overfitting property of DNNs, which severely im-
pact the effectiveness of sample selection [35, 34]. Therefore, a new
FL framework that can train a shared model effectively with clients
having noisy labels, without public benchmark data is urgently re-
quired.

Challenges. Designing such a robust training framework is chal-
lenging for the following reasons in FL. Firstly, in contrast to the
vast reservoirs of training data accessible for centralized learning, the
quantity of client data in FL is typically limited. Thus, the client’s lo-
cal model can quickly overfit the samples with noisy labels when the
amount of training data is limited [1]. As a result, the local model can
memorize all the samples with noisy labels, leading to limited dis-
criminatory capability of the empirical loss between noisy and clean
labels. Thus, how to correctly distinguish the data with noisy labels
using the memorization effect with limited amount of data becomes
the first critical challenge. Secondly, to preserve privacy, the local
data in FL cannot be accessed by the server. Thus, the client must
select confident data by itself, which can lead to confirmation bias.
This bias arises when the client unhesitatingly selects the data with
noisy labels for training [24]. The confirmation bias can mislead the
convergence direction of the local model. Therefore, how to conduct
data selection to effectively avoid confirmation bias is the second
critical challenge. Furthermore, data heterogeneity is a critical prob-
lem in FL, leading to severe model divergence across clients [16].
Learning only from data with clean labels will further exacerbate the
divergence across clients and lose the valuable features of the data
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with noisy labels. Therefore, how to effectively utilize the heteroge-
neous data with noisy labels to train the robust and general global
model is the third critical challenge.

In this paper, we propose FedCoop, a cooperative federated learn-
ing framework for noisy labels. FedCoop is a two-stage framework
that mainly consists of three components: 1) Loss Transformer, 2)
Feature Comparator, and 3) Feature Matcher. In each training round,
each client first performs data selection, where the Loss Transformer
and Feature Comparator jointly evaluate label quality of the sam-
ples within it. Specifically, in the Loss Transformer, an inter-client
integrated loss is designed to well estimate the probability of each
sample’s label being clean with the help of other clients. The Feature
Comparator evaluates the label quality for each sample in terms of la-
tent feature space in order to further improve the robustness of noisy
label detection. After that, the client’s local dataset is dynamically
divided into clean-labels and noisy-labels datasets by integrating the
evaluation information from these two components. After data se-
lection, to effectively learn from the data with noisy labels, we de-
sign the Feature Matcher, a feature-based Semi-Supervised Learner
(SSL), which is proposed to exploit the feature of global class to
increase the accuracy of pseudo labeling and reduce the model in-
consistency across the clients.

Our main contributions are summarized as follows:

e We propose a general noisy label detection and robust global
model training framework for Federated Learning, FedCoop,
which integrates the robust and general noisy label detection
method with an FL-adaptive semi-supervised learning scheme for
federated noisy label learning.

o We fully exploit the cooperative advantage in FL to develop the
Loss Transformer, which identifies the clients’ noisy label data by
inter-client integrated loss to prevent the clients from trapping in
confirmation bias.

e We address the issue of DNNs rapidly overfitting on a small
amount of noisy data by designing FilterNet as a DNN with lim-
ited capacity in the Loss Transformer.

e We design the Feature Comparator to improve the robustness of
clean label selection, which identifies the noisy label by represen-
tation discrepancy across the clean label data and noisy label data.

e We propose the Feature Matcher, the feature-based SSL scheme
to adapt the heterogeneous noise degree in FL. by consistently
pseudo-labeling guided by global feature. The experiment results
show that FedCoop improves the model accuracy up to 62% and
27% on average compared with the baselines.

2 Related Work

Label-noise Learning in Centralized Training. Existing works in
centralized training can be divided into two categories: 1) Noise
cleaning-based approaches [13, 4, 18] and 2) Training noise-robust
models [12, 29]. The noise cleaning-based methods first select out
the clean data and then conduct the model training based on them
[13, 23, 18]. For instance, Tanaka et al.[23] integrate label correc-
tion to relabel the noisy samples in order to improve the efficiency
of data utilization. However, these sample selection approaches are
not effective for FL since they assume that the data with clean la-
bels have small losses. In FL, the limited amount of data available in
each client makes it easier for the local model to overfit the data with
noisy labels. As a result, data with noisy labels may have smaller
losses, leading to potential issues with model generalization. The
other category of methods [12, 29] mainly focus on designing ro-
bust loss functions to train robust models using the data with noisy
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Figure 1. An overview of FedCoop.

labels. The performance of this type of methods decreases seriously
as the ratio of noise increases. As the noise distributions among the
clients are usually different, these approaches lead to severe weight
divergence across the local models.

Federated Learning with Noisy Label. Existing works about
FL with noisy labels can be summarized into two main cate-
gories: 1) Benchmark data-dependent methods [9, 26, 6] and 2) La-
bel correction-based methods [33, 34, 35]. The Benchmark data-
dependent methods extract the subset of clean clients or data with
clean labels using public benchmark data. For instance, DS [26] se-
lects the confident samples by estimating the similarity between the
client’s training data and benchmark data from the server. However,
these approaches highly rely on the benchmark data, which is hard to
retrieve due to the privacy issue. The label correction-based methods
first train the global model with the client’s confident samples and
then performs the label correction on the client’s data with noisy la-
bels. For instance, RoFL [34] utilizes label correction while naively
training the sample with small loss to create local centroids and
exchange them between clients and servers. However, these meth-
ods have the following critical limitations. First, they don’t con-
sider the overfitting property of DNNs and confirmation bias prob-
lem [28] when designing their sample selection approaches, which
severely impacts the effectiveness of sample selection. Second, they
are not designed for heterogeneous noise distributions across differ-
ent clients. Moreover, the methods mentioned above do not fully ex-
ploit the data with noisy labels to train the global model, resulting in
poor generalization of the global model.

3 Method
3.1 Preliminaries and Definitions

We consider a cross-silo FL system with K participating clients and
one global server. Unlike the cross-device FL, the clients of cross-silo
FL usually have sufficient computational resources and stable net-
work connections [19]. Let 6C be the parameters of a global model,
and L = {6F }le be the set of local models for K participants. Let
po(x) be the class probabilities predicted by the model 6 given the
input x. We denote CE(p, ¢) as the cross-entropy between two dis-
tributions p and ¢g. The training dataset of client k is denoted by
Dk = {(x yk)}l {» where Ny is the total number of training sam-
ples for the client. As we investigate the noisy label issue in FL, the
label y[’.‘ of each sample in client k& can be noisy yf, but the feature
of training instance xll‘ is clean. We denote the set of noise ratios for
K clients as {ek}szl.
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Figure 2. The workflow of Loss Transformer.

3.2  Overview

Figure 1 shows the overview of FedCoop. Following the standard
schema of FL, we design three novel components to achieve robust
learning: Loss Transformer (Section 3.3), Feature Comparator
(Section 3.4), and Feature Matcher (Section 3.6). These compo-
nents are deployed on the client’s side and intelligently interact with
the central server in order to conduct robust training in two phases:
data selection and model training. In the data selection phase, dur-
ing each training round, the server first selects the helper clients for
the client’s Loss Transformer using noisy model discrepancy (DIP),
which jointly measures the noise level and model similarity between
target client and candidate clients. Then, the server sends the global
model and the global class-wise features to the clients. Before local
training starts, each client performs data selection by Loss Trans-
former and Feature Comparator. The Loss Transformer utilizes the
FilterNet, a DNN with limited capacity, to evaluate the label quality
while cooperating with the helper clients to mitigate the confirmation
bias by the client itself. The Feature Comparator evaluates the label
quality through comparing each sample’s latent feature extracted by
TargetNet (the model requiring training through FL) with the global
class-wise features. After splitting the dataset into noisy and clean
data, FilterNet and TargetNet are simultaneously trained by the sep-
arated data to prevent error accumulation and make the system more
robust to noisy labels. The FilterNet is trained using the data with
clean labels in order to learn the corresponding distribution, increas-
ing loss separability between the data with noisy and clean labels. In
the model training phase, the Feature Matcher utilizes the data with
both clean and noisy labels to train the TargetNet in the SSL man-
ner, improving the generalization of the global model. In addition,
the TargetNet also extracts the class-wise feature embeddings from
the data with clean labels. Then, each client uploads its local models
and learned feature embeddings to the server. Finally, the server ag-
gregates the local models and updates the global class-wise feature
embeddings. This whole process iterates till the model converges.

3.3 Loss Transformer

The Loss Transformer is designed to provide unbiased evaluation of
the data samples within a client. In centralized learning, the empiri-
cal loss has been widely utilized as a simple but effective metric to
differentiate clean and noisy samples [13, 18]. However, it cannot be
directly applied in the FL scenario for the following reasons. Firstly,
the limited amount of local training data within a single client can
cause the local DNNs to quickly overfit the data with noisy labels,
resulting in the empirical loss having limited discriminatory capabil-
ity between noisy and clean labels. Secondly, clients are susceptible
to confirmation bias, wherein their local models may favor examples
that confirm pre-existing beliefs or expectations due to its overfitting,
even if those examples contain noisy labels. To demonstrate the im-
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Figure 3. The F1 score of the centralized noisy data detection methodology
on CIFAR-10 under 50% symmetric noise in FL. Centralized data selection
methodology is performed for 10 clients by (a) the local model; (b) the global
model.

pact, we directly apply the selection methodology based on empirical
loss [18] to each client in FL. Figure 3 represents the validation re-
sult. From Figure 3(a), we observe that the F1 score of each client
decreases as the training progresses when the local model is used
for prediction. This decrease can be attributed to the clients unhesi-
tatingly selecting the data with noisy labels for training. When the
global model is used, the F1 score of each client is low, indicating
that the global model is not able to effectively learn from the data of
each client, as shown in Figure 3(b).

In order to effectively overcome the above limitation, we introduce
FilterNet in the Loss Transformer to tackle the overfitting caused by
limited amount of local training data. Moreover, the inter-client inte-
grated loss is designed in the Loss Transformer to deal with confir-
mation bias. Figure 2 represents the workflow of Loss Transformer.
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FilterNet. FilterNet is designed to prevent the DNN model from
quickly overfitting the data with noisy labels, especially on limited
data with a high ratio of noise. Directly minimizing the empirical
risk on noisy samples can result in the DNNs memorizing all of
the corrupt labels during the training process. Although DNNs are
prone to overfitting with noisy label samples, the memorization ef-
fect can still be leveraged to facilitate learning from clean samples
in a simple pattern during the initial stage of training, before gradu-
ally memorizing the noisy samples [1]. Based on this effect, various
studies [34, 13, 18, 33] have filtered noisy samples based on their loss
values. However, these methods overlook the overfitting property of
DNNs, which severely decreases the discriminatory capability of em-
pirical loss [1, 36]. Therefore, the problem lies in preventing DNNs
from overfitting noisy labeled data quickly, particularly in scenar-
ios where the amount of data is limited and the noise ratio is high.
Recently, Cheng et al. [8] theoretically shows that DNN's with lower-
capacity can perform better on noisy datasets in centralized learning.
Based on this finding, we propose FilterNet with limited capacity in
FL. Since it is challenging to design a local model with the appropri-
ate capacity for each client given an arbitrary task, we decouple the
DNNs into an encoder (f) with varying amounts of blocks (B) fol-
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lowed by a linear classifier (g). The encoder can be further divided
into different modules, such as a single convolutional layer or a block
of layers (e.g. a residual block). The number of blocks is restricted
to be smaller than the TargetNet. This approach allows for flexibility
in choosing the appropriate capacity for each client’s encoder. Figure
4 compares the convergence rates of DNNs with different capacities
under the high ratio of noise. As shown in Figure 4, the shallower
network converges slower in limited noisy data with high symmetric
noise ratio. This finding suggests that FilterNet is a promising solu-
tion to address the quick overfitting problem in FL.
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Figure 5. Training on CIFAR-10 with 40% symmetric noise, warm up for
1 global epochs. (a) Standard training with cross-entropy loss from the local
FilterNet. (b) Training with inter-client integrated loss.

Inter-client Integrated Loss. Though FilterNet can mitigate the
overfitting problem, confirmation bias still severely impacts the sam-
ple selection process in FL. In FL, the client’s noise ratio is hetero-
geneous and unknown to the server. For the clients with high ratio
of noisy labels, their local models can easily overfit the data with
noisy labels, resulting in low empirical risk. In this case, samples
with small losses cannot be considered as clean label data since the
local models’ predictions are biased. The inter-client integrated loss
aims to leverage the knowledge of helper clients to improve the pre-
diction reliability of each sample while maintaining privacy. Helper
clients should have high data trustability and a similar local model to
that of the target client. High data trustability means that the helper
clients should have sufficient clean label data to learn the correct rela-
tionships between clean data and corresponding clean labels. In FL,
the client’s data heterogeneity can lead to the divergence of local
models among clients. Consequently, measuring the model relevance
between the target client and candidate helper clients can enhance
model stability. To select H reliable helper clients for the target client
k, we design a noisy model discrepancy metric, denoted as DIP,

L
DIP(0%,0%) = & ). llok, — %, II” o
=1
where € = —N’;\‘/’jﬁ“; wal.se
on client i; N is the number of local training data on client 7; L is
the total number of layers in the FilterNet and / is the layer index.
It is important to note that the smaller the value of DIP, the more
reliable the helper clients are for the target client. During each com-
munication round, the server collects all participating clients’ models
and the noisy label ratio. The Nimise is estimated using Equation 7
(detailed discussion in Section 3.5). The server then selects H helper
agents with smaller DIP for the target client in the next round.
After determining the H helper clients, we use an integrated loss
L ¢ to fully exploit the cooperative characteristic of FL, which is
defined as
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Figure 6. The workflow of Feature Comparator.

Notably, the helper’s or client’s FilterNet is only used to perform
inference in Lz for data selection. It will not be optimized in the
data selection phase. Figure 5 shows the distribution of the inter-
client integrated loss, which is more separable than the local client’s
CE. The data with clean labels have a smaller inter-client integrated
loss, which is easier to be modeled by a Gaussian Mixture Model
(GMM) [20] model.

To estimate the probability of each local training sample being
the clean label data, we employ a two-component GMM [20] to fit
{L Ic(x,k )}f\i "1 For a sample xl(‘ of client k, its probability of hav-
ing a clean label, denoted as p(xlk ), is computed using the posterior
probability p(g|Lr¢ (xll‘)), where g is the Gaussian component with
a smaller mean (i.e., smaller loss).

3.4  Feature Comparator

In real-world scenarios, label noise can be classified into two types:
class-dependent and feature-dependent [30, 1]. The Loss Trans-
former has demonstrated promising results in improving the ability
to detect class-dependent label noise in FL. However, its discrimi-
natory capability may not be as effective in identifying the feature-
dependent noise, which is a more complicated form of label noise
resulting from human annotation [30]. This has motivated the de-
sign of Feature Comparator, which aims to increase the robustness of
noisy-label detection in terms of latent representations. Inspired by
contrastive representation learning (CRL) [5], we propose to utilize
the latent representation information of local samples to discriminate
the data with noisy and clean labels. Generally, the representation
distance between a sample and the embedding of its corresponding
true class should be small, and the distance to the embedding of the
incorrect class should be large. Specific to our problem, the main
challenges are two folds. First, how to create the correct contrastive
pair when the label noise exists? Second, how to discriminate the
noisy label and clean label data by contrastive representations?

To create the correct contrastive pairs with data having noisy labels
in FL, we introduce the global class-wise feature embedding ¥. In
every round, the client k learns the feature l//i of each class ¢ from

the local clean data D’;le n divided by Data Selector (Section 3.5),

namely,

a

¢ 1 i
Vi= e Zl For GOf =0) 3

where fg,(-) is the encoder of the TargetNet; 1(-) is the indicator
function. The TargetNet is the model we want to train through FL,
which is considered to have strong feature extraction ability. Due to
data heterogeneity and different noise distributions in clients, the lo-
cal i is not reliable enough for building contrastive pairs. Therefore,
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the server collects the learned local features from clients and aggre-
gates them to the global feature embedding ‘1’8 for class ¢ by taking
the average.

To filter out the samples with noisy labels using contrastive repre-
sentations, we introduce a scheme to utilize the global class feature
embedding for comparing the sample and its label. Intuitively, the
sample’s feature is closest to its corresponding class’s global feature
embedding. For the sample x; of the client k, we compare the fea-
ture of the sample with all classes’ global features and find its closest
class,

M(xf) = Max({Sim(fox (7). WG ()} ) “)

where Sim(:, ) is the cosine similarity function. Because the sam-
ple’s closest class estimated by Equation 4 may be wrong, we also
compare the extracted feature of the sample with its corresponding
class’s global feature,

HE) = Sim(for (), WG (75 ®)

Finally, we measure each sample of the client k by a feature compar-
ison score FC(-, ) to filter out the data with noisy labels,

FC(xX, y%) = IM(xF) — H (x5 (6)

If the sample’s label is noisy, the feature comparison score will
be large due to the representation inconsistency. It is important to
note that the Feature Comparator differs from the existing similarity-
based methods [34]. The comparison mechanism mentioned above
is more efficient in capturing the dissimilarity between the clean and
the noisy feature distributions in feature-dependent noise.
Discussion. It is worth noting that sharing the global class-wise
feature does not lead to privacy leakage [11]. This is because the
global class-wise feature is derived from deeper layers and consoli-
dates similar object features multiple times, encompassing even the
presence of noisy objects. These consolidated features encompass
category-specific information rather than individual sample features.
Hence, it does not compromise the confidentiality of the client’s sam-
ples.

3.5 Data Selector

The Data Selector is designed to separate data with noisy labels
and clean labels by measuring the proposed reliability score, which
jointly considers the information from Loss Transformer and Feature
Comparator.

Specifically, we first warm up the FilterNet for Ty, global rounds
by training with all clients’ data without selection in the standard
FL procedure. After Ty, p rounds, given a client k, each local sample
x; is evaluated by the reliability score function R(-). At the early
stage of training, the quality of learned features by the TargetNet is
typically not good enough for detecting the noisy label. Therefore,
we dynamically adjust the contribution of feature comparison in the
data reliability score function, as shown below,

R(xX) = p(xk) + 1Ty < 1) exp(~-FC(xk, y*)) ©)

where 1(Ty > t) is the trigger of Feature Comparator, and T is a
hyperparameter to adjust when the Feature Comparator takes effect.
The local sample with the reliability score larger than the thresh-
old 7(¢) is classified as clean-label data and otherwise as noisy-label
data. In all the following experiment, 7(¢) is 0.5 for t < Ty, 1 for
t>Tyand Ty = 10.
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Figure 7. The workflow of Feature Matcher.

3.6 Feature Matcher

After dividing the local data into clean label and noisy label datasets,
we simultaneously train the FilterNet and TargetNet, guaranteeing
that the two networks perform well on their corresponding compo-
nents. For the FilterNet, to increase the loss separability between the
noisy and clean label data, we perform supervised training with clean
label data D .j.4; by minimizing the cross entropy loss L(0F).

As for the TargetNet, in order to effectively utilize the entire train-
ing data, we treat the samples with noisy labels as the unlabeled
data and the samples with clean labels as labeled data. For the unla-
beled data, we can directly apply the existing semi-supervised learn-
ing techniques such as [3] [21] [32]. However, these techniques are
designed for centralized learning. In FL, Jeong et al. [15] empirically
find that these SSL methods would forget the knowledge learned
from the labeled data due to the model inconsistency across multi-
ple clients. Therefore, based on the FixMatch [21], we propose the
Feature Matcher, a feature-consistency SSL technique for FL.

To be specific, for the labeled data (i.e., the clean data), we apply
the weak augmentation (i.e. the standard flipping and rotation oper-
ations) «@(-) to them. Then, the cross entropy loss /g is computed.
For the unlabeled data, the Feature Matcher first produces artificial
labels on the weakly-augmented unlabeled data. In FL, the aforemen-
tioned model inconsistency is caused by the heterogeneous data dis-
tributions among different clients. The inconsistency also affects the
learning of unlabeled data, resulting in the poor pseudo-labeling on
the unlabeled data. To prevent the clients from producing inconsis-
tent pseudo-labeling on unlabeled data, we integrate the global class
features W into the pseudo-labeling to mitigate the heterogeneity
on pseudo-labeling. The global class features can bring the feature-
level knowledge to each client, which is beneficial to produce high-
quality and consensus pseudo labels. Specifically, given a weakly-
augmented unlabeled sample u, we calculate its similarity score S
with the global class feature ¥,

S(a(u) = {Sim(fox (@(u)). Y6 ()}, @®)

Then we obtain the class predicted distribution score g by combining
S and the global model’s prediction,

q(u) = poy (a(u)) + S(a(u)),

After that, we use §(u) = argmax(g(u)) as a pseudo label of u and
calculate the cross-entropy loss with the prediction of unlabeled u
which is transformed by the strong augmentation A,

tu = 1(max(g(w) = n)CE(4(w), po, (Aw))  (10)

For the strong augmentation, we select the transformations (i.e., ad-
justing sharpness, color, solarize, and so forth) with uniform distribu-
tion. Finally, the TargetNet is optimized by the following combined

u € Dypoise )
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Table 1. The average of last 10 rounds test accuracy (%) on CIFAR-10 and SVHN with IID setting at different noise rates and types. The best accuracy for
each noise level is boldfaced.
DataSet CIFAR-10 SVHN
Noise Type Symmetric Pairflip Symmetric Pairflip
Noisy ratio 0.4 0.5 0.6 0.7 0.25 0.35 0.45 0.4 0.5 0.6 0.7 0.25 0.35 0.45
FedAvg 48.86 3743 2882 2094 | 60.34 48.54 40.23 | 59.99 50.01 40.01 30.01 | 7499 65.01 54.99
F-Co teaching | 83.73 7890 69.92 5493 | 87.03 83.54 67.08 | 71.36 59.62 4525 32.65 | 79.25 65.63 53.75
INCV 55.65 5094 4632 24.87 | 62.39 6239 4045 | 6145 51.78 39.38 2925 | 7445 62.13 48.53
DS 73.58 71.30 49.76 3295 | 81.40 43.75 55.16 | 66.53 5322 39.27 49.73 | 84.60 73.59 55.64
CLC 89.90 87.49 82.09 68.85 | 89.56 87.05 77.776 | 93.73 90.10 82.56 34.41 | 9452 91.17 70.30
RoFL 87.11 8293 7501 61.73 | 91.53 89.65 86.65 | 93.51 89.93 81.72 66.59 | 94.65 8545 78.07
Ours 92.03 90.52 89.30 83.72 | 92.83 91.75 91.67 | 9553 95.04 9347 91.23 | 9591 95.73 95.12
loss, Table2. Average of last 10 rounds test accuracy (%) of different methods on
L(07) =l + by, (11) SVHN and CIFAR-10 with different noise distribution settings of symmetric

where 4, is to control the weight of the unlabeled loss. In this study,
we schedule 4, = /luomin(Tf—_[, 1), where 7 is the global training
round and Ay, is an initial value.

4 Evaluation
4.1 Experimental Setup

Datasets. We validate the effectiveness of FedCoop on representa-
tive datasets including SVHN], CIFAR-IOZ, and CIFAR-10N [30].
In addition, we set up the data distribution and noise situation across
different participating clients as follows. We follow [33] to perform
the non-IID data partition. Specifically, for a certain class j, it is sam-
pled from the Bernoulli distribution with a fixed probability p to gen-
erate the class distribution among all the clients. This class distribu-
tion indicates whether the local dataset of client i contains class j.
Then the number of training samples belonging to class j in client
i is sampled from the symmetric Dirichlet distribution [10] with the
parameter ap;g Which determines the concentration of Dirichlet. For
each client, we inject two types of label noise into its local data [13]:
(a) Symmetric Noise [27]: the true label is flipped into the wrong
label sampled from the uniform distribution; (b) Pairflip Noise [13]:
the original label is only flipped into the similar classes. To simulate
heterogeneous noise levels, each participant’s noise level € is drawn
from Beta Distribution with parameters 8 and .

Baselines. Two groups of baselines are adopted. The first group
consists of the methods that tackle noisy labels in centralized learn-
ing: 1) INCV [4] employs cross-validation to identify clean samples
and train on them; 2) Co-teaching [13] simultaneously trains two
DNN:s, and each network chooses the instances with the small loss
as its peer network’s training data. The second group contains the
methods designed to tackle label noise in FL: 1) DS [26] assumes
the server contains clean benchmark data and selects the client’s local
data that are relevant to the benchmark data to train the local model;
2) RoFL [34] shares the central representation of clients’ local data
to maintain the constant decision boundary over clients and performs
label correction on data with noisy labels; 3) CLC [35] identifies the
local data with noisy labels by consensus-defined class-wise infor-
mation and performs label correction on data with noisy labels.

Implementation Details. For the experiments on CIFAR-10 and
SVHN, we use a 9-layers CNN [13] as FilterNet and an 18-layer
ResNet [14] as TargetNet. We adopt stochastic gradient descents
(SGD) as the optimizer for all the experiments, with the momentum
of 0.9, weight decay of 0.0005, and a learning rate of 0.01. We set

! http://ufldl.stanford.edu/housenumbers/
2 https://www.cs.toronto.edu/ kriz/cifar.html

noise.

Dataset CIFAR-10 SVHN

Beta (a, B) (3,4) (2,3) (7,5) (3,4) (2,3) (7,5)
Noise Rate 02-0.7 03-06 04-0.7 | 02-07 03-06 04-07
FedAvg 43.63 47.90 32.52 59.03 65.07 47.01
F-Co teaching 78.23 78.53 78.63 68.19 76.06 54.80
INCV 46.05 49.12 36.54 59.04 50.77 35.59
DS 70.31 74.74 51.23 81.93 8221 71.82
CLC 88.56 88.71 84.84 92.88 93.72 90.57
RoFL 87.02 88.72 83.34 92.45 92.21 82.87
Ours 91.60 91.66 90.16 95.12 95.64 94.50

Table 3. Average of last 10 rounds test accuracy (%) on CIFAR-10 with
different non-1ID and noise settings.

Non-IID Type | (apir = 1000, p =0.9) (apir =100, p =0.9)
Noise Type Symmetric Pairflip Symmetric Pairflip
Noise Rate 0.4 0.5 0.35 0.4 0.5 0.35
FedAvg 4032 32.84 44.75 41770 33.54 45.66
F-Co teaching | 71.68 61.14 71.63 72.14  59.59 69.46
INCV 49.29 3941 52.82 47.12  40.15 53.34
DS 6454 51.51 69.91 65.11 52.34 68.78
CLC 86.32  82.85 83.32 86.25 81.13 80.90
RoFL 86.71  81.50 88.72 86.01  78.77 88.11
Ours 92.01  90.94 92.62 91.68  90.51 92.19

the number of local epochs as 10, the local batch size as 64, and the
number of global epochs as 200.

4.2 Evaluation of Robustness

Different Ratios and Various Types of Noisy Data. We first eval-
uate the robustness of FedCoop to different types of noise. Table
1 shows the model performance with different methods for two
types of noise (symmetric and pairflip) with different ratios. Fed-
Coop achieves the best performance on both types of noise. For
symmetric and pairflip noise in CIFAR-10, FedCoop improves the
model accuracy at most by 62.78%, 51.44%, 32.59%, and on aver-
age 27.89%, 22.38%, respectively, compared with FedAvg. In addi-
tion, the performance of all the baselines prominently decays with
the increase of noise ratio. However, FedCoop maintains high ro-
bustness under different noise scenarios for the reason that the Loss
Transformer and Feature Comparator provide high-quality data se-
lection on each client. Especially, for the extremely symmetric noise
(noise ratio > 60%) on CIFAR-10, FedCoop outperforms the base-
lines with a larger margin: 62.78% over FedAvg, 28.79% over Co-
teaching, 58.85% over INCV, 21.99% over RoFL, 44.07% over DS
and 21.59% over CLC. This is because the Feature Matcher effec-
tively improves the data utilization, making the model intelligently
learn from the noisy labels to increase its generalizability. Moreover,
Table 2 shows the model performance with different distributions of
noisy labels, demonstrating the effectiveness and stability of Fed-
Coop under various scenarios.
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Figure 8. Comparison of Fl-score on CIFAR-10 and SVHN with different

label noise settings. S1 denotes the 60% symmetric noise on each client. S2

denotes the 45% pairflip noise on each client. S3 denotes the clients’ hetero-

geneous noise ratio modeling by beta distribution (@ = 3, 8 = 4).

Heterogeneous Data Distribution. In this part, we further eval-
uate the effectiveness of FedCoop in non-IID settings. We follow
the non-IID data partition and inject different types and ratios of
noise into the data on each client. Table 3 represents the result on
CIFAR-10 with different settings. FedCoop consistently outperforms
the baselines by 5.30% to 58.10%. Compared with the same noise
setting in the IID data partition, all the baselines have performance
degradation and the worst one degrades by 37.76%. This is because
the data distribution and label noise jointly impact the performance
of local models at the same time. On the contrary, FedCoop is still
effective in non-IID settings. The Feature Matcher exploits the global
class feature to produce the high-consistency pseudo-label across the
clients in order to further improve the generalization of the global
model. Thus, the global model can still learn well on clients with
different data distributions.

Real-world Human Annotated Noise. In order to evaluate Fed-
Coop in real-world noise scenarios, we adopt the CIFAR-10N [30]
dataset in this experiment with the IID setting. The CIFAR-10N is
a dataset annotated by human annotators with different background
and knowledge discrepancies. Compared with synthetic noise, the
noise transition matrix of CIFAR-10N is complex and hard to model.
Moreover, the pattern of noise labels in CIFAR-10N is feature-
dependent [30] instead of class-dependent, which is challenging to
model and predict the noise distribution since the noise transition ma-
trices are complex. Table 4 shows the best accuracy of different meth-
ods on CIFAR-10N. FedCoop outperforms other methods by at most
39.61%, and 17.49% on average. The feature-dependent noise easily
confuses the loss, leading the loss-based methods to fail. However,
the Feature Comparator of FedCoop utilizes the global class feature
to detect the noisy label, effectively keeping the local model from
being corrupted by noise data. These evidences show that FedCoop
is effective for the real-world human annotated noisy label dataset.

Table 4. Best test accuracy on CIFAR-10N (Worst) with IID setting.

Methods | FedAvg — F-Co teaching  INCV DS CLC  RoFL  Ours
Acc.(%) | 81.07 81.18 5440 7471 84.19 8357 94.01

4.3 Analysis on Sample Selection

The effectiveness of sample selection is essential for training a ro-
bust model. Hence, we use Fl-score as the metric to evaluate the
effectiveness of sample selection. F1 score is widely used in noisy
label detection in centralized learning [17, 7]. Figure 8 represents the

F1 scores of all the methods on different datasets with various noise
types and distributions in the IID setting. CLC and RoFL are trapped
in the confirmation bias, leading to performance degradation in data
selection. It shows that the centralized methods are not applicable in
FL scenario. The F1 score of the FedCoop is consistently higher than
other baselines under different ratios of noisy labels during the train-
ing process. This is because FedCoop utilizes the helper clients to
effectively mitigate the confirmation bias caused by a single client.
Compared with the methods that only utilize the sample’s loss to fil-
ter out the data with noisy labels, FedCoop identifies the data with
noisy labels in terms of feature space, which is more effective and
stable in selecting the data with clean labels with the heterogeneous
distribution. Hence, FedCoop can provide a high-quality sample se-
lection without losing the essential information from the clean label
data, making the local model effectively learn from clean data.

Table 5. Ablation study results (average of last 10 rounds test accuracy (%))
on CIFAR-10 with different noise settings.

Noise Type Symmetric Pairflip
Noise Rate 04 07 Ao o) | 035
Ours 92.03 83.72 91.68 91.75
Ours w/o Helper Clients 89.89  63.79 88.55 88.41
Ours w/o FilterNet 90.42  66.87 89.23 90.22
Ours w/o Feature Comparator | 85.95  79.62 66.86 89.23
Ours w/o Feature Matcher 7293 3733 74.37 75.98

Table 6. Average of last 10 rounds test accuracy (%) of on CIFAR-10 using
FedCoop with different number of helper clients.

Noise Type Symmetric Paitflip
0.4 with non-IID

H 0.4 0.2-0.7 (apir = 100, p = 0.9) 0.35
1 91.08 90.20 90.73 91.67
2 91.23 90.37 91.21 91.87
3 90.70 89.00 90.70 91.36
4 90.07 89.04 90.61 91.63
5 91.04 89.35 90.74 91.43

4.4  Ablation and Sensitivity Study

Ablation Study. To study the effectiveness of each component of
FedCoop, we conduct the ablation study with four different noise
scenarios. Table 5 shows the corresponding result. We can observe
that Feature Matcher has critical contribution to FedCoop. It repre-
sents that only using the clean label data is not effective for train-
ing the global model, especially when the noise ratio is high. In the
non-IID setting, the Feature Comparator plays an important role in
data selection since the accuracy dropped at most 24.82% compared
with other components. This indicates that only relying on the in-
stance’s loss to filter data with noise labels out is not robust in the
heterogeneous data distribution. The Feature Matcher also signifi-
cantly benefits in non-IID data partition settings since the knowledge
of the global feature can improve the consistency of pseudo-labeling
across the clients, which mitigates knowledge forgetting in FL. For
the Loss Transformer, the FilrerNet and the cooperation of helper
clients significantly contribute to the effectiveness of FedCoop in the
heavy noise scenario. This shows that the proposed collaboratively
data selection mechanism is reasonable and essential.

Sensitivity Study of H. The number of helper clients H impacts
the communication cost and the performance of the global model
at the same time. Therefore, we conduct experiments to investigate
the performance variation as more helper clients are selected for the
Loss Transformer. We set the total number of clients as 20 with dif-
ferent noise settings. Table 6 shows the performance of global model
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on CIFAR-10 with the different number of helper clients. The re-
sult indicates that the small number (H < 2) of noisy clients is suf-
ficient to achieve high accuracy regardless of different noise levels.
We can also observe that increasing the number of helper clients only
has a little improvement on the global model’s performance (< 1%).
Therefore, choosing one or two helper clients can already guarantee
the robustness and effectiveness of the FedCoop. It can cause negli-
gible extra communication overhead at the same time.

5 Conclusion

In this paper, we present FedCoop, a feature comparison-based co-
operative federated learning framework for noisy labels. To address
the heterogonous noise distribution on the clients, the FedCoop se-
lects the clean label data by combining the evaluation from the Loss
Transformer and Feature Comparator. The Loss Transformer utilizes
the FilterNet to filter the noisy label based on the inter-client in-
tegrated loss that aims to eliminate the confirmation-bias problem
from the local model. In addition, the Feature Comparator detects the
noisy label by comparing the sample’s feature with the global class
feature. After selecting the clean label data, the Feature Matcher per-
forms the adaptive SSL on the TargetNet to train the robust global
model. Systematic evaluations have demonstrated the effectiveness
of the proposed FedCoop.
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