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Abstract—In real-world situations, speech reaching our ears is
commonly corrupted by both room reverberation and background
noise. These distortions are detrimental to speech intelligibility and
quality, and also pose a serious problem to many speech-related ap-
plications, including automatic speech and speaker recognition. In
order to deal with the combined effects of noise and reverbera-
tion, we propose a two-stage strategy to enhance corrupted speech,
where denoising and dereverberation are conducted sequentially
using deep neural networks. In addition, we design a new objec-
tive function that incorporates clean phase during model train-
ing to better estimate spectral magnitudes, which would in turn
yield better phase estimates when combined with iterative phase
reconstruction. The two-stage model is then jointly trained to opti-
mize the proposed objective function. Systematic evaluations and
comparisons show that the proposed algorithm improves objective
metrics of speech intelligibility and quality substantially, and sig-
nificantly outperforms previous one-stage enhancement systems.

Index Terms—Deep neural networks, denoising, dereverbera-
tion, phase, ideal ratio mask.

I. INTRODUCTION

IN DAILY listening environments, reverberation from sur-
face reflections in a room and background noise from other

sound sources both distort target speech. These distortions, par-
ticularly when combined, can severely degrade speech intelligi-
bility for human listeners, especially for hearing-impaired (HI)
listeners [9]. Moreover, a lot of speech-related tasks, such as
automatic speech recognition (ASR) and speaker identification
(SID), become more difficult under these adverse conditions
[1], [7], [23]. Therefore, solutions to denoising and dereverber-
ation will benefit human listeners and many speech processing
applications.
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Given the importance of the problem, a lot of effort has been
made in the past decades to combat noise and reverberation
[24], [27], [33]. In recent years, deep neural networks (DNNs)
have been widely employed for speech enhancement or separa-
tion. Substantially better performance over conventional speech
enhancement methods has been reported in many studies [16],
[37], [39], [42]. The basic idea is to formulate the enhancement
or separation problem as a supervised learning problem, and
then utilize DNNs for supervised learning. For more discussion
on deep learning based speech separation, we refer the interested
reader to a recent comprehensive review [34].

Despite the large number of recent studies for DNN-based
speech enhancement, few address both denoising and derever-
beration. To separate noisy-reverberant speech, Han et al. [15]
proposed a spectral mapping algorithm to perform denoising
and dereverberation simultaneously using a single DNN. The
idea is to learn a mapping function from the spectrum of noisy-
reverberant speech to that of clean-anechoic speech. However,
informal listening with human subjects indicates no evident im-
provement on speech intelligibility. Zhao et al. [44] pointed
out that this is likely because different natures of noise and
reverberation make them difficult to address together. Gener-
ally speaking, background noise is an additive signal to clean
speech, while reverberation is a convolution process with a room
impulse response (RIR) [43]. Taking this difference and hu-
man tolerance of room reverberation [8] into account, Zhao
et al. [44] learned a mapping function to the spectrum of noise-
free reverberant speech, without performing dereverberation.
On this task, they reported speech intelligibility improvements
for HI listeners in some noisy-reverberant conditions. Another
recent work on noisy-reverberant speech enhancement is time-
frequency masking in the complex domain by Williamson and
Wang [40]. They introduced a complex ideal ratio mask (cIRM)
using clean-anechoic speech as the desired signal for DNN-
based enhancement. Experiment evaluations show that cIRM
estimation outperforms Han et al.’s spectral mapping approach
[15]. Like the spectral mapping method, they attempt to remove
noise and room reverberation in one processing stage.

We believe that denoising and dereverberation should be
addressed separately, due to their fundamental differences. In
this paper, we propose a two-stage system to enhance noisy-
reverberant speech. In the proposed system, we first develop
two DNN-based subsystems that are trained for denoising and
dereverberation individually. Then, we concatenate these pre-
trained DNNs to perform joint training. It is worth noting that
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the strategy of performing denoising and dereverberation in a
step by step fashion was adopted previously [21]. This study
first removes additive noise by using spectral subtraction, and
then removes late reverberation from the noise-suppressed rever-
berant signal by a multi-step linear prediction dereverberation
algorithm. Different from this previous study, we use DNNs for
denoising and dereverberation and perform joint training after-
wards. Previously, joint optimization has been applied to robust
speech recognition tasks [6], [25].

Furthermore, motivated by the time-domain signal recon-
struction technique [38], we propose a new objective function
that incorporates clean phase to calculate the mean squared er-
ror (MSE) in the time domain. We find that this new objective
function leads to consistently better performance in objective
speech intelligibility and quality metrics.

The main contributions of this study are twofold. First, we
propose a DNN-based two-stage framework to enhance noisy-
reverberant speech. Second, we incorporate clean speech phase
into the objective function to perform system optimization to
obtain a better magnitude spectrum estimate. A preliminary
version of our study is published in [45]. Compared with
the previous conference paper, in this study, we investigate
the two-stage system in more noisy-reverberant conditions,
including more types of noise, untrained signal-to-noise ratios
(SNRs), untrained reverberation times, recorded RIRs, and
different speakers.

This paper is organized as follows. In Section II, we first
describe the signal model for the noisy-reverberant speech.
Then, the proposed two-stage enhancement algorithm and
objective function are presented. Experimental setup and
evaluation results are given in Section III. We conclude this
paper in Section IV.

II. ALGORITHM DESCRIPTION

In this section, the noisy-reverberant signal model is first
introduced. We then describe our noisy-reverberant speech en-
hancement algorithm. Fig. 1 shows the diagram of the pro-
posed system, which consists of three modules: a denoising
module, a dereverberation module and a time-domain signal
reconstruction (TDR) module. We point out that the TDR mod-
ule is only utilized during training and removed during testing.
The three modules are introduced in detail in the following
subsections.

A. Signal Model

Let s(t), x(t), n(t) and h(t) denote anechoic speech, rever-
berant speech, background noise and room impulse response
function, respectively. The noisy-reverberant speech y(t) can be
modelled by

y(t) = x(t) + n(t) = s(t) ∗ h(t) + n(t) (1)

where ∗ stands for the convolution operator.
The objective of this study is to recover the anechoic signal

s(t) from the corresponding noisy-reverberant observation y(t).
This mathematical model suggests the proper order of denoising
and dereverberation. Since n(t) is generally uncorrelated with

Fig. 1. System diagram of the proposed two-stage model, where “Std” denotes
standard deviation and “Exp” exponential operation.

the desired signal s(t) and the reverberant speech x(t), it is
natural to remove the noise from y(t) first and then to recover
the anechoic speech.

B. Denoising Stage

Given a noisy-reverberant utterance, the aim of this stage is to
remove the background noise while keeping the reverberation
untouched. In other words, the target signal of this processing
stage is the noise-free reverberant speech. In order to suppress
noise, we adopt the commonly used time-frequency (T-F) mask-
ing framework. Specifically, the ideal ratio mask (IRM) is esti-
mated by employing DNN. Then, the predicted mask is applied
to the T-F representation of noisy-reverberant speech to perform
denoising as shown in Fig. 1. Recent research [3] using DNN
to estimate the IRM for segregating speech from background
noise has shown substantial speech intelligibility improvements
for HI listeners.

Within DNN-based speech enhancement, an alternative
method is to directly estimate the log-magnitude or log-power
spectrum of clean speech [36], [42]. However, a study on training
targets [36] suggests that masking-based targets tend to outper-
form mapping-based ones in both objective speech intelligibility
and quality. With room reverberation added, our previous work
[44] also indicates that the adoption of masking-based targets
can bring significant performance improvements over mapping-
based targets.
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Based on the above observations, we employ a DNN with 3
hidden layers to predict the IRM in order to remove the noise
from noisy-reverberant speech. Since the training target, the
IRM, is bounded between 0 and 1, a sigmoid activation function
is used in the output layer.

The denoising IRM is defined as follows [36],

I RM(m, f ) =
√

X2(m, f )

X2(m, f ) + N 2(m, f )
(2)

where X2(m, f ) and N 2(m, f ) denote the energy of reverberant
speech and background noise, respectively, at time frame m
and frequency channel f . As shown in Fig. 1, the magnitude
spectrum of noisy-reverberant speech is then multiplied by an
estimated IRM to form the input to the next dereverberation
stage processing.

A set of complementary features is adopted as the input for
this stage [35], i.e., 15-dimensional amplitude modulation spec-
trogram (AMS), 31-dimensional Mel-frequency cepstral coef-
ficients (MFCC), 13-dimensional relative spectral transform
perceptual linear prediction (RASTA-PLP), 64-dimensional
Gammatone filterbank power spectra (GF), and their deltas.
Therefore, for each time frame, the feature dimension is 246 (2
× (15 + 31 + 13 + 64)). We note that this set of features is
originally introduced for denoising in anechoic environments.
A 11-frame context window is utilized to encompass the input
features (see Section III).

C. Dereverberation Stage

After the suppression of background noise, the original prob-
lem is reduced to recovering the anechoic speech s(t) from
the reverberant speech x(t). To perform dereverberation in this
stage, we follow the spectral mapping method proposed by Han
et al. [14]. The choice of spectral mapping is also motivated by
the fact that masking is well justified for separation as speech
and noise are uncorrelated but uncorrelatedness does not hold
well for dereverberation [34]. Compared with the original spec-
tral mapping algorithm, our dereverberation stage has two major
differences. First, instead of using percent normalization (nor-
malizing values to the range of [0, 1]), we normalize the train-
ing target, log-magnitude spectrum of clean-anechoic speech,
to zero mean and unit variance by using the global statistics of
training data. This normalization is suggested in [41], which in-
dicates that, in contrast to percent normalization, mean-variance
normalization retains more spectral details, hence beneficial for
the recovery of anechoic spectrum. Second, we use the IRM-
processed magnitude spectrum of noisy-reverberant speech for
feature extraction to train the dereverberation DNN. A log com-
pression and mean-variance normalization are also applied to
the features before splicing adjacent frames (11 frames in this
study). By using IRM-processed features, we expect closer cou-
pling between the separately trained denoising stage and dere-
verberation stage, which can benefit joint training. The DNN
used in this stage has 3 hidden layers as well and a linear layer
is used as the output layer.

D. Time-Domain Signal Reconstruction With Clean Phase

Most supervised speech separation systems perform enhance-
ment on the magnitude spectrum and use the noisy phase to
synthesize the time-domain signal. In order to alleviate the mis-
match between the enhanced magnitude and the noisy phase,
Wang and Wang [38] proposed a DNN to learn to perform
TDR given the noisy phase. Improvements on objective speech
quality are reported by their method. Similarly, Erdogan et al.
[5] proposed to predict a phase-sensitive mask. Le Roux et al.
[22] pointed out that the objective function of TDR with the
noisy phase is equivalent to that of phase-sensitive masking.
However, with the noisy-reverberant phase, Wang and Wang’s
approach could be problematic, since the phase is corrupted
more seriously under such conditions. On the other hand, the
magnitude and phase spectra carry complementary information
[26], which implies that phase can be potentially utilized to
help obtain better magnitude enhancement. Motivated by these
observations, we extend the TDR method and propose a new
objective function. More specifically, during training, we feed
the enhanced magnitude (after denoising and dereverberation)
to an inverse fast Fourier transform (IFFT) layer to reconstruct
the enhanced time-domain signal with the corresponding clean
phase, and then optimize the loss in the time domain. While
phase-sensitive masking also utilizes clean phase in the form
of the phase difference between clean speech and corrupted
speech, our proposed method directly employs clean phase in
training.

Mathematically, at time frame m, let s, Ŝ and pc denote the
windowed clean-anechoic signal segment, the corresponding
enhanced magnitude after two-stage processing and clean phase,
respectively. � denotes the parameters of a learning system.
Then, the objective function at the training stage is defined as
follows,

L(s, Ŝ; �) = ‖s − I F FT (Ŝ ◦ e j pc )‖2
2 (3)

where ◦ denotes the element-wise multiplication and ‖ · ‖2 the
L2 norm.

From another perspective, supervised speech enhancement
systems typically consider all the T-F units to be of the same
importance and ignore the underlying energy of the corrupted
or desired signal in each T-F unit. In the proposed objective
function, computing the loss in the time domain will force the
learning machine to implicitly place more emphasis on the T-F
units that contribute more to the time-domain signal. In other
words, instead of weighting T-F units explicitly using normal-
ized mixture energy [19] or mixture energy [39], our method
weights different units on the basis of their corresponding time-
domain signal.

E. Joint Training

As shown in Fig. 1, we concatenate the denoising DNN
and the dereverberation DNN into a bigger network for joint
optimization. In the denoising stage, an estimated IRM is
applied to the magnitude spectrogram of noisy-reverberant
speech. The enhanced magnitude is then passed through a log
function to compress the dynamic range of values. We add a
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batch normalization layer [17] before the splicing operation to
make sure that the input to the dereverberation DNN is properly
normalized. During training, this layer keeps exponentially
moving averages on the mean and standard deviation of each
mini-batch. During testing, such running mean and standard
deviation are fixed to perform normalization. The normalized
features of 11 frames (see Section III) are spliced as the input
features to the dereverberation DNN. After the dereverberation
stage, the enhanced log-magnitude is recovered by using the
standard deviation and mean of clean-anechoic log-magnitude,
as we have normalized the target of dereverberation DNN
before training. These statistics are computed from the training
data. Finally, after an exponential operation, the processed
magnitude is fed to the IFFT layer to get the enhanced
time-domain signal. The loss in the time domain is computed
by (3). Since each step above is differentiable, we can derive
the error gradients to jointly train the whole system.

Before joint training, the denoising DNN and the derever-
beration DNN are trained separately with the MSE objective
function, and the resulting parameters are used to initialize the
two-stage speech enhancement system.

F. Time-Domain Signal Resynthesis

During system training, clean phase is used to help obtain bet-
ter magnitude spectrum. However, such information is not avail-
able during testing, and the observed phase may be severely dis-
torted by room reverberation and background noise. In order to
reduce the inconsistency between the enhanced magnitude and
the corrupted phase, Griffin-Lim’s iterative phase enhancement
algorithm [12] and overlap-add (OLA) method are employed to
resynthesize the enhanced time-domain signal (see also [15]).
In other words, during testing, the TDR module (namely, the
IFFT layer with clean phase) is removed, and the output of the
proposed system is the enhanced magnitude. Since the accu-
racy of estimated phase of Griffin-Lim’s method depends on the
accuracy of the enhanced spectral magnitude [10], with more ac-
curate magnitude estimation, our system is expected to perform
better enhancement.

III. EVALUATIONS AND COMPARISONS

A. Datasets and Experimental Setup

We evaluate our proposed system on the IEEE corpus [29]
spoken by a female speaker. There are 72 phonetically balanced
lists in this corpus and each list contains 10 sentences. Sen-
tences selected from list 1–50, list 68–72 and list 58–67 are
utilized to construct training data, validation data and test data,
respectively. Therefore, the sentences in each set are different
from those in the others. The RIRs are generated in a simulated
room, whose size is 10 m × 7 m × 3 m. We generate different
RIRs with the position of the receiver fixed and the position of
the speaker randomly chosen. Moreover, we keep the distance
between the receiver and the speaker to 1 m, so that the direct to
reverberant ratio (DRR) does not change much under each T60.
We utilize an RIR generator [13] to produce the RIRs, which
is based on the image method [2]. In the experiments, three

TABLE I
AVERAGE DRR VALUES AT DIFFERENT REVERBERATION TIME

values of T60 are investigated, i.e., 0.3 s, 0.6 s and 0.9 s. For
each T60, 10 RIRs are generated for the training and validation
sets; 1 RIR is generated for the test set. To further evaluate the
generalization of our approach under different values of T60, for
each value of T60 at 0.4 s, 0.5 s, 0.7 s and 0.8 s, we also generate
1 RIR for testing. In summary, we have 500 × 3 (T60s) × 10
(RIRs) = 15,000 reverberant utterances in the training set, 50
× 3 (T60s) × 10 (RIRs) = 1,500 reverberant utterances in the
validation set, and 100 × 7 (T60s) × 1 (RIR) = 700 reverberant
utterances in the test set. The average DRR values are listed in
Table I.

Four types of noises are studied, including speech shaped
noise (SSN), babble noise (BABBLE), noise recorded in a liv-
ing room (DLIVING), and cafeteria noise recorded in a busy
office cafeteria (PCAFETER), with SSN being stationary and
the others nonstationary. The DLIVING noise and PCAFETER
noise are from the Diverse Environments Multichannel Acous-
tic Noise Database (DEMAND) [32]. Since we are dealing with
monaural noisy-reverberant speech enhancement, the first chan-
nel recorded DLIVING and PCAFETER are used in the experi-
ments. It should be noted that, since DLIVING and PCAFETER
are recorded in real rooms, they contain room reverberation. All
the noises are about 5 min long. To generate noisy-reverberant
speech, random cuts from the first 4 min and the remaining
1 min of each noise are mixed with the reverberant speech at
a specified SNR for the training/validation set and test set, re-
spectively. For training and validation, three levels of SNRs are
used, namely, −6 dB, 0 dB and 6 dB, where reverberant speech
is taken as the signal in calculating the SNR. For testing, be-
sides the three SNRs seen during training, −3 dB and 3 dB are
also included to evaluate the generalization of our system to
mismatched SNR levels. Consequently, for each type of noise,
there are 15,000 × 3 (SNRs) = 45,000 utterances for training,
1,500 × 3 (SNRs) = 4,500 utterances for validation, and 700
× 5 (SNRs) = 3,500 utterances for testing. DNN models are
trained and evaluated for each noise separately. However, nei-
ther the noise segments nor the RIRs of test data are seen during
training.

In our experiments, given a signal sampled at 16 kHz, we
divide the signal using a 20-ms Hamming window with a 10-ms
window shift for framing. To optimize the time-domain loss, the
clean-anechoic target signal of each frame is also windowed by
using a Hamming window. For each time frame, a 320-point fast
Fourier transform (FFT) is applied, resulting in 161 frequency
bins. In order to incorporate the temporal information of adja-
cent frames, we utilize a context window to slide 5 frames on
each side of the current frame (11 frames in total) to combine
the frame-level information. This size of context window is sug-
gested in [15]. To resynthesize time-domain signals, the number
of iterations of Griffin-Lim’s algorithm is set to 20.
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For DNN training, the input features are normalized to zero
mean and unit variance by using the statistics of the training data.
All DNNs are trained with exponential linear units (ELUs) [4],
which lead to faster convergence and better performance over
rectified linear units (ReLUs) [11], especially when networks
become deep. In each hidden layer, there are 1024 hidden units.
We utilize Adam [20] as the optimizer to train the networks.
Dropout regularization [30] is adopted to prevent overfitting.
The dropout rates for the input layer and all the hidden layers
are set to 0.2. The hyper-parameters are chosen according to
the performance on the validation data. Since the IRM target is
bounded by [0, 1], we employ sigmoid activation units in the
output layer; for the others, linear output layers are used.

B. Comparison Methods

We compare our proposed system to two DNN-based speech
enhancement methods. One is the spectral mapping method
[15]. A DNN is trained to directly estimate the log-magnitude
of clean-anechoic speech from the log-magnitude of noisy-
reverberant speech. Like the dereverberation stage described in
Section II-C, we normalize the target log-magnitude of clean-
anechoic speech to zero mean and unit variance. For conve-
nience, we denote this method as “mapping”. The other ap-
proach is denoted as “masking”. It is an extension of the IRM
masking method for the noisy speech enhancement [36]. To en-
hance the noisy-reverberant speech, we construct the IRM by
taking the clean-anechoic speech as desired signal and the rest
as interference. A DNN with the complementary features as
the input is utilized to predict the thus defined IRM, and then
the estimated ratio mask is applied to the magnitude of noisy-
reverberant speech to obtain the enhanced signal. In order to
maintain the same network depth with our proposed two-stage
system, for these two comparison systems, we employ a DNN
with 6 hidden layers, each with the same size as in the proposed
system.

Our proposed objective function in the time domain utilizes
clean phase for training, and it can be employed by other su-
pervised speech enhancement systems. In order to examine the
impact of the proposed objective function, we change the ob-
jective function of the comparison methods to the proposed
one, and denote these two new systems as “mapping+TDR”
and “masking+TDR”, with the latter network structure similar
to that proposed in [38]. Note that these two DNNs are ini-
tialized by using the parameters of the corresponding mapping
method and masking method. In addition, the phase-sensitive
mask (PSM) [5] is evaluated as an objective function, and it is
compared with the proposed objective function. Specifically, a
DNN with the complementary features as the input is used to
estimate the PSM defined in [5]. The DNN has the same net-
work architecture as used in the masking comparison method.
This method is denoted as “PSM”.

The proposed two-stage system is denoted as “two-
stage+TDR”. In order to investigate how much performance
change is due to the two-stage strategy alone, another two-stage
system without the TDR module is also included as another
comparison. This method is denoted as “two-stage”.

C. Evaluation Metrics

In the experiments, we evaluate speech intelligibility by using
short-time objective intelligibility (STOI) [31], which predicts
speech intelligibility by comparing the temporal envelops of
the clean reference speech and the processed speech. The value
range of STOI is typically from 0 to 1. In addition, perceptual
evaluation of speech quality (PESQ) [28] is employed to eval-
uate speech quality. PESQ scores are in the range [−0.5, 4.5].
For both metrics, the higher scores indicate better performance.
Since our study intends to remove both background noise and
room reverberation, clean-anechoic speech is used as the refer-
ence signal to compute the objective metrics.

D. Evaluation Results

1) One-Stage Processing vs. Two-Stage Processing: Ta-
bles II, III, IV and V list the STOI and PESQ scores of unpro-
cessed and processed signals under different noisy-reverberant
conditions by using different methods. We first consider the
matched conditions; in other words, the SNRs and reverberation
times are seen during training. Similar performance trends were
observed for the four different types of noise. By switching to
the IRM target defined for removing noise and reverberation and
using the complementary features, the masking method outper-
forms the mapping method at each noisy-reverberant condition
in terms of both STOI and PESQ metrics. This observation is
consistent with the denoising results reported in [36], [44].

Taking the masking method as the stronger one-stage pro-
cessing baseline, we compare its average performance with that
of the two-stage method. In terms of STOI, the two-stage strat-
egy brings 0.9%, 1.0%, 3.4% and 1.8% improvements over
the masking method for DLIVING, PCAFETER, BABBLE and
SSN, respectively. Note that, for some noisy-reverberant condi-
tions, the masking method is slightly better than the two-stage
method. For example, under the condition of T60 = 0.3 s and
SNR = 0 dB with DLIVING, the STOI value of the masking
method is 0.7% higher than that of the two-stage method. Such
cases happen only when T60 is low. For some noises, with low
reverberation time and high DRR, the noisy-reverberant speech
enhancement problem is to an extent reduced to the noisy speech
enhancement problem. In other words, in the two-stage frame-
work, the denoising stage becomes dominant. Since we employ
a smaller DNN for the denoising stage than that used in the
masking method, the performance of the two-stage method can
be a little worse. In terms of PESQ, performance improvements
over the masking method are observed in most conditions.

2) Effects of Proposed Objective Function: To study the
effects of the proposed objective function, we combine it with
the mapping method and the masking method, respectively.
Clearly, additional performance gain is obtained by employing
the new objective function. On average, for DLIVING, the map-
ping method and the masking method are improved by 2.4%
and 1.7% STOI values, respectively; for PCAFETER, they are
improved by 2.4% and 1.6%, respectively; for BABBLE, they
are improved by 3.3% and 1.8%, respectively; and for SSN,
the STOI values are increased by 3.2% and 1.5%, respectively.
At the same time, there are also some improvements in PESQ
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TABLE II
STOI AND PESQ SCORES IN MATCHED CONDITIONS FOR DLIVING NOISE. BOLDFACE HIGHLIGHTS THE BEST RESULT OF EACH CONDITION

TABLE III
STOI AND PESQ SCORES IN MATCHED CONDITIONS FOR PCAFETER NOISE

TABLE IV
STOI AND PESQ SCORES IN MATCHED CONDITIONS FOR BABBLE NOISE

TABLE V
STOI AND PESQ SCORES IN MATCHED CONDITIONS FOR SSN

values after incorporating the new objective function. These
results suggest that the proposed objective function provides
an effective way to improve supervised speech enhancement in
general.

The introduction of a phase-sensitive objective function in
the PSM provides higher PESQ improvements than ratio mask-
ing, suggesting better speech quality. The possible reason is

that, compared to the IRM, the phase-sensitive mask produces
higher signal-to-distortion ratio [5]. However, with the proposed
objective function, the masking+TDR method outperforms the
PSM method in most conditions. This also demonstrates the
effectiveness of the proposed objective function.

With this new objective function and the two-stage pro-
cessing strategy, our final model, two-stage+TDR, performs
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Fig. 2. (Color online) Spectrograms of a noisy-reverberant utterance (BABBLE noise, SNR = −6 dB, T60 = 0.9 s), a reverberant utterance (T60 = 0.9 s), an
anechoic utterance and an enhanced utterance (two-stage+TDR). The sentence is “Help the weak to preserve their strength.”

Fig. 3. �STOI evaluations at untrained SNRs for 4 types of noise.

the best in the large majority of noisy-reverberant conditions.
Compared with the masking method, on average, 2.3%, 2.1%,
4.9% and 3.2% STOI improvements are obtained for DLIV-
ING, PCAFETER, BABBLE and SSN, respectively. We should
point out that the masking method is a very strong baseline for
comparison. By comparing with Han et al.’s spectral mapping
method, we can get a larger performance boost. To illustrate the
proposed algorithm, an enhancement example is presented in
Fig. 2. The spectrogram of a noisy-reverberant utterance with
BABBLE noise at SNR = −6 dB and reverberation time of
0.9 s is shown in Fig. 2(a). The corresponding spectrograms
of reverberant speech, anechoic speech and speech enhanced
by the proposed algorithm (two-stage+TDR) are presented in
Figs. 2(b), (c) and (d), respectively. Comparing the spectrograms
of noisy-reverberant speech and enhanced speech, one can see
that smearing effects resulting from reverberation and additive
noise have been largely removed, and the spectrotemporal struc-
ture is considerably restored. This indicates that the proposed
system performs denoising and dereverberation effectively.

3) Evaluations at Untrained SNRs: For supervised ap-
proaches, the generalization ability of a trained model is a criti-
cal factor to consider. Here, we evaluate how well our proposed
method generalizes to untrained conditions during testing. In
the following evaluations, the STOI score change (�STOI in
percent) and the PESQ score change (�PESQ) are used as the
criterion. We compare the proposed algorithm with the strong
baseline, i.e., the masking method. To evaluate the generaliza-
tion to untrained SNR conditions, under each of the two un-
trained SNR levels (−3 dB and 3 dB), we take average across
the reverberation times (0.3 s, 0.6 s and 0.9 s). The results
are presented in Fig. 3 and Fig. 4. As shown in the figures,
for all untrained SNR conditions with different types of noise,
our method improves objective speech intelligibility and quality
substantially, and outperforms the masking method. This indi-
cates that, even though the SNR levels are not included in the

training data, the proposed approach generalizes well to these
untrained SNR conditions.

4) Evaluations at Untrained Reverberation Times: The
model is trained at three reverberation times, namely, 0.3 s,
0.6 s and 0.9 s. We now test the model under new reverbera-
tion times to evaluate its generalization ability to a wide range
of reverberation times. In this evaluation, we use reverberation
times of 0.4 s, 0.5 s, 0.7 s and 0.8 s. For presentation, average
�STOI score and �PESQ score across different SNR levels
(−6 dB, 0 dB and 6 dB) at each reverberation time are com-
puted. The evaluation results are shown in Fig. 5 and Fig. 6.
Similar to the evaluation of the untrained SNRs, at each un-
trained reverberation time, objective speech intelligibility and
quality scores are improved. The proposed algorithm obtains a
consistent performance improvement over the baseline masking
method.

5) Evaluations With Recorded RIRs: Simulated RIRs are
used to generate reverberant speech in the above experiments.
Now we evaluate our trained systems with recorded RIRs. Three
RIRs are selected from the Aachen Impulse Response (AIR)
database [18], and resampled to 16 kHz. They were recorded
in a lecture room, a meeting room and an office room, and the
corresponding T60 is 0.70 s, 0.21 s and 0.37 s, respectively.
With sentences from list 58–67 of the IEEE corpus, these
recorded RIRs and untrained segments of the 4 types of noise,
we construct a new test set for evaluation. Specifically, under
each noise, there are 1,500 utterances, i.e. 100 (sentences) ×
3 (RIRs) × 5 (SNRs, −6, −3, 0, 3, 6 dB). In each reverberant
room condition, we take average of �STOI and �PESQ
scores across the 5 SNRs. The comparison results with the
masking method are given in Fig. 7 and Fig. 8 in �STOI and
�PESQ. Although the enhancement systems are trained with
very limited reverberant conditions (e.g. three reverberation
times, fixed room size, fixed speaker-microphone distance
and uniformed reflection surfaces), they generalize well to
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Fig. 4. �PESQ evaluations at untrained SNRs for 4 types of noise.

Fig. 5. �STOI evaluations at untrained reverberation times for 4 types of noise.

Fig. 6. �PESQ evaluations at untrained reverberation times for 4 types of noise.

Fig. 7. �STOI evaluations at recorded RIRs for 4 types of noise.

Fig. 8. �PESQ evaluations at recorded RIRs for 4 types of noise.

real reverberant rooms. Substantial improvements in objective
speech intelligibility and quality are obtained over unprocessed
noisy-reverberant speech. Like previous evaluations, the
proposed two-stage system outperforms the strong masking
baseline.

6) Evaluations on Different Speakers: To illustrate that
DNN models are not very sensitive to training speakers, we

now evaluate the methods on speech utterances from different
speakers. We emphasize that the models trained on a single
speaker are used without any change or retraining in this eval-
uation. Specifically, 10 female speakers are randomly selected
from the TIMIT corpus [46] and 2 sentences are selected from
each speaker. Noise and room reverberation are added to con-
struct a new noisy-reverberant test set. Therefore, under each
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TABLE VI
STOI AND PESQ SCORES IN MISMATCHED SPEAKER CONDITIONS FOR

DIFFERENT TYPES OF NOISE. BOLDFACE HIGHLIGHTS THE BEST RESULT. DLI,
PCA AND BAB STAND FOR DLIVING, PCAFETER

AND BABBLE, RESPECTIVELY

noise, there are 180 utterances, i.e., 10 (speakers) × 2 (sen-
tences) × 3 (RIRs for T60 = 0.3, 0.6, 0.9 s) × 3 (SNRs, −6,
0, 6 dB). We report average STOI and PESQ scores across the
three SNRs and the three T60s. The evaluation results are listed
in Table VI. Compared with the average performance shown in
Tables II–V in the matched speaker condition, the improvements
over unprocessed noisy-reverberant speech become smaller as
expected. But Table VI still indicates that the proposed two-
stage+TDR model trained with just one speaker shows some
generalization to different speakers, and outperforms the other
systems in term of STOI. It is worth noting that the mapping
method seems unable to generalize in this case and performs
rather poorly in PESQ. This could be a reason why the two-
stage+TDR system does not provide best PESQ scores as the
second stage performs spectral mapping.

IV. CONCLUDING REMARKS

Background noise and room reverberation are two major
causes distorting speech signal in real listening environments.
To address both the noise and reverberation problem, we have
proposed a two-stage algorithm to deal with two kinds of dis-
tortions in sequence. Two DNNs are first utilized to perform
denoising and dereverberation separately, and then combined
into a deeper network subject to joint optimization with a new
proposed objective function in the time domain. By incorporat-
ing clean phase, the system can be directly optimized in the time
domain, leading to a better estimate of magnitude spectrum. We
also show that the proposed objective function can be directly
adopted by other supervised separation systems, and boosts their
performance. Systematic evaluations using objective speech in-
telligibility and quality metrics show that our system outper-
forms a spectral mapping method and a stronger masking-based
method in various noisy-reverberant conditions. These evalua-
tion results strongly indicate that the proposed system improves
actual speech intelligibility and quality in real noisy-reverberant
environments.

During the evaluation, we trained separate models for differ-
ent types of noise. We have also carried out multi-noise training
for further evaluation. In other words, we trained the DNN
models on all four noises. Compared with single-noise train-
ing, slightly lower STOI and PESQ scores were obtained under

some low SNR conditions; for most conditions, however, simi-
lar scores were observed to noise-specific training. In addition,
the same performance trends were observed and the proposed
method still performed best.

In this study, we have developed a framework for joint op-
timization of two enhancement subsystems. For the denois-
ing subsystem and dereverberation subsystem, we utilize rel-
atively straightforward DNNs. A recent study [41] proposed a
reverberation-time-aware DNN (RTA-DNN) to perform dere-
verberation, which takes the reverberation time into account
and outperforms a conventional DNN-based method. The RTA-
DNN can be considered in our dereverberation stage. Moreover,
although our proposed objective function employs clean phase
during training, the aim is still to obtain a better estimate of mag-
nitude spectrum. Since phase is corrupted more severely under
noisy-reverberant conditions, if clean-anechoic phase can be
partly estimated, better speech intelligibility and quality of the
enhanced signal can be expected. Therefore, incorporating com-
plex ratio masking [40] or extending the two-stage algorithm to
the complex domain represent promising future directions.
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