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ABSTRACT

Human listeners often have difficulties understanding speech in the
presence of background noise in the real world. Recently, supervised
learning based speech enhancement approaches have achieved sub-
stantial success, and show significant improvements over the con-
ventional approaches. However, existing supervised learning based
approaches often try to minimize the mean squared error between
the enhanced output and the pre-defined training target (e.g., the log
power spectrum of clean speech), even though the purpose of such
speech enhancement is to improve speech understanding in noise. In
this paper, we propose a new deep neural networks based enhance-
ment approach by incorporating a speech perception model into the
loss function. Specifically, we use the short-time objective intel-
ligibility metric in the loss in addition to the mean squared error.
Optimizing the proposed perceptually guided loss is expected to im-
prove speech intelligibility further. Systematic evaluations show that
our proposed approach is able to improve speech intelligibility in a
wide range of signal-to-noise ratios and noise types while maintain-
ing speech quality.

Index Terms— ideal ratio mask, denoising, speech intelligibil-
ity, STOI, deep neural networks

1. INTRODUCTION

In real-world environments, speech is inevitably corrupted by back-
ground noise coming from various sound sources like other speak-
ers, machines and so forth. These distortions degrade both speech
intelligibility and quality, especially when the signal-to-noise ratio
(SNR) is at low level. For both normal hearing (NH) and hearing im-
paired (HI) listeners, understanding noisy speech usually becomes
very challenging. This is detrimental to effective communication
among people. On the other hand, many speech-related applications,
including automatic speech recognition (ASR) and speaker identifi-
cation (SID), perform poor under adverse noisy conditions [1, 2].

Enhancing speech in noise has attracted considerable research
efforts in the past decades. In recent years, many deep learning based
supervised speech enhancement approaches have been proposed and
substantial performance improvements have achieved over conven-
tional signal processing based approaches. The key idea is to formu-
late the denoising problem as a supervised learning task, and then
employ the deep learning techniques to solve it. Xu et al. [3] propose
to utilize deep neural networks (DNN) to learn a non-linear mapping
function from the log power spectrum of noisy speech to that of the
corresponding clean speech. Instead of performing direct mapping,
Wang et al. [4] employ a set of complementary features extracted
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from corrupted speech to estimate the ideal ratio mask (IRM), and
then apply the predicted ratio mask to the time-frequency (T-F) rep-
resentation of noisy speech to obtain the enhanced speech. Con-
sidering that the estimation of T-F mask is an intermediate result
which does not directly lead to the actual enhancement objective,
Weninger et al. [5] propose a signal approximation loss function.
Optimizing the new loss function by using the long short-term mem-
ory deep recurrent neural networks (LSTM-DRNN) improves the
performance of T-F masking approach further. Erdogan et al. [6]
develop a phase-sensitive mask, which incorporates the phase dif-
ference between noisy speech and clean speech, resulting in good
performance in terms of signal-to-distortion ratio (SDR). Wang and
Wang [7] propose to optimize a loss function defined in the time do-
main, where the enhanced time-domain signal is reconstructed by
using noisy phase during training. It has been shown that comput-
ing the loss in the time domain is equivalent to the phase-sensitive
masking approach [8]. Zhao et al. [9] extend Wang and Wang’s
time domain reconstruction approach by using clean phase during
training to obtain a better estimate of magnitude. In order to jointly
enhance the magnitude spectrum and phase spectrum, Williamson et
al. [10] propose the complex ideal ratio mask (cIRM), and perform
T-F masking in the complex domain. Since the noisy phase is also
enhanced, better speech quality is reported.

Significant improvements over traditional speech enhancement
approaches have been reported in previous studies. Existing su-
pervised enhancement approaches are trained to minimize the mean
squared error (MSE) between the output and the corresponding train-
ing target (e.g., log power spectrum of clean signal, or IRM). In the
ideal case, when the MSE is minimized to zero, the processed signal
is restored to the ideal target, and thus the perceptual aspects (i.e.
sound quality and intelligibility) would be optimized. However, in
practice the MSE cannot be reduced to zero, and the residual can
be high, especially when the SNR of the input signal is low. Al-
though related, the MSE criterion does not directly reflect the per-
ceived speech quality and intelligibility. In other words, from the
perspective of human listeners, the MSE is not the optimal objective
to optimize. It is desired to leverage the domain knowledge of speech
perception in the loss function. This paper attempts to directly incor-
porate the short-time objective intelligibility measure (STOI) [11] in
a supervised speech enhancement approach to optimize for speech
intelligibility. The popular STOI metric has shown high correlation
with speech intelligibility.

One work that is closely related to ours is proposed by Koizumi
et al. [12]. In their study, the perceptual metrics are introduced to op-
timize the speech enhancement algorithm. Specifically, the percep-
tual evaluation of speech quality (PESQ) [13] and perceptual evalu-
ation methods for audio source separation (PEASS) [14] are used to
design a time varying reward. A set of mask templates are defined
as actions. Then the DNN-based speech enhancement algorithm is
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optimized by utilizing reinforcement learning (RL) with the previ-
ously defined reward and actions. Different from their approach, we
directly incorporate a speech intelligibility metric into the loss func-
tion and optimize it by supervised learning.

The rest of the paper is organized as follows. In next section, we
describe the proposed approach in details. The experimental setup
and evaluation results are presented in Section 3 and Section 4, re-
spectively. Finally, we conclude this paper in Section 5.

2. ALGORITHM DESCRIPTION

In this section, we will introduce the proposed perceptually guided
speech enhancement approach, including the modified STOI com-
putation and the loss function.

2.1. Modified STOI computation

The original STOI metric is described in details in [11]. It is calcu-
lated in the short-term one-third-octave-band domain with a window
length of 384 ms. However, the supervised speech enhancement ap-
proach in this study is performed in the short-time Fourier transform
(STFT) domain with a 32 ms Hanning window and a 16 ms window
shift. Assuming a 16 kHz sampling rate, for each time frame, a 512-
point fast Fourier transformation (FFT) is applied, resulting in 257
frequency bins. In order to comply with the STOI calculation, the
frequency bins are grouped to form one-third octave bands. Specifi-
cally, let X(m, f), Y (m, f) denote the STFT representation of the
clean reference signal and the enhanced signal, respectively, at time
frame m and frequency channel f . Corresponding frequency bins
are then combined to 15 one-third octave bands, where the center
frequency is set from 150 Hz to around 4.3 kHz. Then, we have the
new T-F representations as follows,

Xj(m) =

√√√√√f2(j)−1∑
f=f1(j)

‖X(m, f)‖22

Yj(m) =

√√√√√f2(j)−1∑
f=f1(j)

‖Y (m, f)‖22

(1)

where j is the index of the one-third octave band; f1 and f2 are the
edges of the one-third octave bands; ‖ · ‖2 denotes the L2 norm.
Then, the short-term temporal envelope of the clean speech and the
enhanced speech can be denoted by the following two vectors,

xm,j = [Xj(m), Xj(m+ 1), ..., Xj(m+N − 1)]T

ym,j = [Yj(m), Yj(m+ 1), ..., Yj(m+N − 1)]T
(2)

where N is set to 24 corresponding to the 384 ms analysis window
length. According to the original STOI computation, the short-term
temporal envelope of the enhanced speech is normalized and clipped
by using the following equation,

ȳm,j(i) = min(
‖xm,j‖2
‖ym,j‖2

ym,j(i), (1 + 10−β/20)xm,j(i)) (3)

where i = 1, 2, ..., N ; β controls the lower bound of SDR, which is
set to−15 in our study following the original STOI implementation.

The correlation coefficient between the vectors xm,j and ȳm,j is

defined as the intermediate speech intelligibility measure, namely,

dm,j =
(xm,j − µxm,j )T (ȳm,j − µȳm,j

)

‖xm,j − µxm,j‖2‖ȳm,j − µȳm,j
‖2

(4)

where µ(·) denotes the sample mean of the vector.
The speech intelligibility at time frame m can be calculated by

taking average over all one-third octave bands. We define a modified
STOI function at time frame m as follows,

dm = f(X24
m ,Y

24
m ) =

1

J

∑
j

dm,j (5)

where X24
m and Y 24

m denote the 24-frame magnitude spectrum start-
ing from the time framem of the clean reference speech and the cor-
responding enhanced speech, respectively; J denotes the total num-
ber of the one-third octave bands. It is worth noting that the defined
modified STOI function f is a derivative function, since each opera-
tion described above is differentiable. Therefore, we can optimize a
modified STOI function f based loss by using backpropagation (BP)
algorithm.

2.2. Proposed approach and loss function

Fig. 1 shows the diagram of the proposed approach. For the noisy
speech enhancement, we employ the log magnitude spectrum of
noisy speech as features to estimate the IRM, which is defined in
equation (6) [4], and then apply the estimated ratio mask to the noisy
magnitude spectrum to obtain the enhanced magnitude spectrum.

IRM(m, f) =

√
X2(m, f)

X2(m, f) +N2(m, f)
(6)

where X2(m, f) and N2(m, f) denote the energy of clean speech
and noise, respectively, at time frame m and frequency channel f .

To incorporate the temporal information, we utilize a context
window to encompass the features from 2 frames before and 2
frames after the current frame. The ratio mask of the current frame
is estimated by using this 5-frame context information. It should
be pointed out that we only utilize one DNN to perform enhance-
ment for each frame. Furthermore, there are many candidates for
the denoising module. The only requirement is that the enhanced
magnitude can be obtained by using the denoising module, since it
is required by the modified STOI function computation.

After denosing, we can obtain the 24-frame enhanced magni-
tude spectrum Y 24. Together with the corresponding 24-frame clean
magnitude spectrum X24, we can compute the modified STOI value.
Finally, at time frame m, the loss function is designed as follows,

L(m) = (1− f(X24
m ,Y

24
m ))2 + λ ∗ ‖X24

m − Y 24
m ‖F /24 (7)

where function f is the previous defined STOI function; ‖ · ‖F de-
notes the Frobenius norm; λ denotes a tunable hyper-parameter used
to balance the two terms in the loss function. In our experiments, λ
is set to 0.01. During training, we utilize a pre-trained ratio mask es-
timation neural network to initialize the denoising module in the pro-
posed approach, and then train it by minimizing the proposed loss.
During testing, the enhanced speech is synthesized by using the en-
hanced magnitude with the noisy phase. It should be pointed out that
using the modified STOI function alone to design the loss function
is not suitable, especially for the wide-band speech signal enhance-
ment, because the STOI is only based information below the 4.3 kHz
band. Consequently, we need to combine it with a MSE-based loss
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Fig. 1: Diagram of the proposed algorithm. Yellow rectangles denote the 24-frame magnitude spectrum of noisy speech; blue rectangles
denote the 24-frame estimated ratio masks; green rectangles denote the corresponding 24-frame magnitude spectrum of clean reference
speech. The 24-frame enhanced magnitude spectrum is obtained by applying the estimated ratio mask to the noisy magnitude spectrum. The
DNNs that are used to do speech enhancement for each frame share the same parameters.

function in order to account for the whole speech spectrum.
Moreover, the computation of STOI values is based on 384 ms

(24 frames in this study) temporal information. Therefore, optimiz-
ing the loss function (7) also explores the temporal context informa-
tion at the output end. We note that such type of information is ig-
noring in multi-frame to one-frame supervised speech enhancement
approaches, where the temporal information only at the input end
is utilized by explicitly using a context window. Previous study [4]
has shown that predicting neighbouring frames’ target can bring us
consistent improvements over predicting single frame target. Conse-
quently, by using the output context information, the proposed loss
function can potentially benefit for performing better enhancement.

3. EXPERIMENTAL SETUP

The proposed approach is evaluated using the IEEE corpus spoken
by a female speaker [15], which consists 72 lists with 10 sentences in
each list. List 1-50, List 67-72 and List 51-60 are used to construct
training data, validation data and test data, respectively. Speech-
shaped noise (SSN) and three types of non-stationary noise from
NOISEX database [16] including speech babble (Babble), factory
floor noise (Factory) and destroyer engine room noise (Engine) are
used to generate noisy speech in our study. Each noise segment is 4
min long. The first 3 min is used for training and validation and the
remaining is used for testing. For training/validation set, each clean
sentence is mixed with 10 random noise segments at three SNR lev-
els, namely, -5, 0 and 5 dB; for test set, each clean sentence is mixed
with 1 random noise segment at five SNR levels, namely, -5, -3, 0, 3
and 5 dB, where -3 and 3 dB SNR conditions are unseen in the train-
ing set. Therefore, there are 500×4 (noise types)×3 (SNRs)×10
(noise segments)=60 k utterances in the training set; 50×4 (noise
types)×3 (SNRs)×10 (noise segments)=6 k utterances in the vali-
dation set; 100×4 (noise types)×5 (SNRs)×1 (noise segment)=2 k
utterances in the test set. Neither the sentences nor the noises in the
test set are seen during training.

The proposed approach is first compared with a DNN-based
masking denoising approach (masking), which employs a DNN to
predict the IRM and utilizes the estimated ratio mask to perform
denoising. It is also used as the denoising module in the proposed
approach. Since part of the designed loss function is similar to that
defined in the signal approximation approach (SA), we also compare

our approach with the SA approach. The pre-trained masking model
is utilized to initialize the SA model. To show that the proposed
approach can be considered as a framework to improve the existing
supervised speech enhancement approaches, we simply replace the
denoising module with a DNN-based mapping approach (mapping),
which is trained to learn a mapping function from log magnitude
spectrum of noisy speech to that of clean speech. We denote this
approach as “mapping+proposed loss”. The normal mapping de-
noising approach is considered as a baseline to compare.

All DNNs in our study have three hidden layers with 1024 ex-
ponential linear units (ELUs) [17] in each layer. They are trained
by using Adam [18] optimizer with dropout regularization [19]. The
dropout rate in the experiments is set to 0.3. We employ sigmoid ac-
tivation units in the output layer for the ratio mask estimation whose
value is bounded between 0 and 1; otherwise, linear activation units
are used. The input features are normalized to zero mean and unit
variance. For the mapping approach, the training target is also nor-
malized by using mean and variance normalization as suggested in
[3]. The enhanced time-domain signal is synthesized by using noisy
phase.

4. EVALUATION RESULTS

In our study, STOI, PESQ and SDR [20] are used to evaluate speech
intelligibility and sound quality. Table 1 and Table 2 show the av-
erage performance of these three metrics under four types of noise
with matched SNR levels (-5, 0 and 5 dB) and mismatched SNR lev-
els (-3 and 3 dB), respectively. Boldface numbers highlight the best
result under each condition.

Compared with the unprocessed noisy speech condition, each
supervised speech enhancement approach improves the STOI,
PESQ and SDR performance significantly, in both matched and
mismatched SNR conditions. In other words, all the approaches
investigated in this study can generalize well to the SNR conditions
that are not included in the training data.

Since the objective of our study is to improve speech intelligibil-
ity, we focus on comparing the STOI scores of the different speech
enhancement approaches first. As expected, the proposed approach
achieves the best STOI score for each noise type. The performance
trends of different approaches are similar under the four types of
noise. Taking the Babble noise for an example, our approach out-
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STOI (in %) PESQ SDR (dB)
SSN Babble Factory Engine SSN Babble Factory Engine SSN Babble Factory Engine

unprocessed 71.23 68.63 67.96 73.11 1.179 1.284 1.086 1.243 0.18 0.14 0.12 0.14
mapping 81.00 77.42 79.44 86.29 2.077 1.876 2.099 2.391 5.74 5.42 7.10 8.76
masking 84.00 80.01 82.34 89.18 2.135 1.896 2.063 2.465 6.70 6.18 8.52 10.61

SA 84.70 80.91 82.90 89.08 2.233 1.988 2.192 2.557 7.43 6.98 9.12 11.29
mapping+proposed loss 83.22 79.70 81.65 88.13 2.041 1.868 2.024 2.361 5.60 5.28 7.16 8.96

proposed approach 85.70 81.99 84.31 90.27 2.202 1.996 2.136 2.525 7.36 6.87 9.14 11.32

Table 1: Average performance scores for different enhancement approaches. Results averaged over mixtures under matched SNR levels (-5
dB, 0dB and 5 dB).

STOI (in %) PESQ SDR (dB)
SSN Babble Factory Engine SSN Babble Factory Engine SSN Babble Factory Engine

unprocessed 71.33 68.69 68.09 73.30 1.172 1.271 1.084 1.247 0.14 0.13 0.12 0.12
mapping 82.02 78.40 80.40 86.77 2.104 1.886 2.117 2.394 5.88 5.59 7.33 8.84
masking 84.80 80.70 83.13 86.69 2.154 1.884 2.071 2.474 6.72 6.23 8.59 10.60

SA 85.48 81.56 83.59 89.46 2.256 1.999 2.208 2.574 7.52 7.06 9.25 11.32
mapping+proposed loss 84.05 80.61 82.42 88.53 2.069 1.871 2.033 2.357 5.78 5.40 7.39 9.04

proposed approach 86.48 82.68 84.98 90.61 2.229 1.999 2.149 2.542 7.46 6.94 9.27 11.35

Table 2: Average performance scores for different enhancement approaches. Results averaged over mixtures under mismatched SNR levels
(-3 dB and 3 dB).

performs the masking approach by about 2%. In fact, more STOI
improvements are observed at lower SNR levels, where speech intel-
ligibility improvements become more important since the communi-
cations are challenging in very noisy environments. At -5 dB, com-
pared with the masking approach, 3.01% STOI score improvements
are obtained for Babble by our approach. The SA approach per-
forms better than the masking approach but worse than the proposed
approach. We should point out that the masking approach and the
SA approach are already very strong benchmarks to compare with
and represent the state-of-the-art supervised denoising approaches.

Moreover, after replacing the masking denosing module in our
approach with the mapping approach, about 2% STOI score im-
provements over the normal mapping approach are obtained under
each type of noise on average. This demonstrates the potential ben-
efit of migrating many other supervised speech enhancement ap-
proaches to the perceptually guided framework. Further speech in-
telligibility improvements are expected.

It is worth noting that the improvements in speech intelligibility
provided by the proposed approach are not coming at the expense of
a degradation in speech quality. Based on PESQ and SDR, our ap-
proach shows comparable performance to the SA approach, and out-
performs the masking approach. In our experiments, we find that the
tunable hyper-parameter λ affects speech intelligibility and quality
of the enhanced speech. Currently, we are using a fixed value during
system training and the value is determined empirically. However,
some preliminary experiments by using a simple automatically adap-
tive λ show that better speech intelligibility and quality can be ob-
tained under some noisy conditions. Designing a strategy to tune the
parameter λ automatically is one direction to explore for the future
study.

5. CONCLUSION

In this paper, we have proposed a perceptually guided speech en-
hancement approach aiming to suppress noise and improve speech
intelligibility. Different from the existing supervised speech en-

hancement approaches, we incorporate a speech intelligibility metric
into the loss function. Systematic evaluation shows that the proposed
approach improves speech intelligibility over the existing supervised
speech enhancement approaches in a wide range of noisy conditions.
Future research will focus on incorporating additional perceptual in-
formation into both the loss function and the enhancement approach
in general to further improve the performance.
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